

中华人民共和国国家标准

GB/T 19624-2004

在用含缺陷压力容器安全评定

Safety assessment for in-service pressure vessels containing defects

2004-12-29 发布

2005-06-01 实施

中华人民共和国国家质量监督检验检疫总局 发布 国国家标准化管理委员会

前 言

本标准的附录 A、附录 B、附录 C、附录 D、附录 G、附录 H 为规范性附录,附录 E、附录 F 为资料性 附录。

本标准由中国特种设备检测研究中心提出。

本标准由全国锅炉压力容器标准化技术委员会归口。

本标准的负责起草单位和主要起草人员:

中国特种设备检测研究中心:陈钢、李学仁、左尚志、孙亮、陶雪荣、贾国栋;

北京航空航天大学:钟群鹏、田永江;

华东理工大学:李培宁、王志文;

清华大学:余寿文、董亚民;

合肥通用机械研究所:陈学东、张立权、何处仁、王冰;

中国石化经济技术研究院:寿比南;

浙江工业大学:张康达;

大连理工大学:秦红;

中国通用石化机械工程公司:肖有谷;

浙江大学:王宽福;

南京工业大学:沈士明。

引 言

本标准是为适应国家有关法规、规章中关于在用含缺陷压力容器、压力管道安全评定要求和工程需要 而提出的对在用含缺陷压力容器、压力管道进行安全评定的方法。

本标准依据"合于使用"和"最弱环"原则,用于判别在用含缺陷压力容器在规定的使用工况条件下 能否继续安全使用,锅炉和管道的承压元件也可以参照本标准进行安全评定,是一种适合于工程实际的 安全评定方法。

在用含缺陷压力容器安全评定

1 范围

本标准规定了在用含缺陷压力容器安全评定的术语、定义与符号,总论,断裂与塑性失效评定,疲劳 失效评定。

本标准适用于在用钢制含超标缺陷压力容器的安全评定。锅炉、管道以及其他金属材料制容器中 的承压元件在进行安全评定时也可参照使用。

本标准适用于含下列类型缺陷的承压元件的安全评定:

——平面缺陷:包括裂纹、未熔合、未焊透、深度大于等于1 mm 的咬边等;

----体积缺陷:包括凹坑、气孔、夹渣、深度小于1 mm 的咬边等。

本标准不适用于下列压力容器和结构:

一一核能装置中承受核辐射的压力容器和结构;

——机器上非独立的承压部件(如压缩机、发电机、泵、柴油机的承压壳或气缸等);

一一承受直接火的受压元件;

——电力行业专用的封闭式电气设备的电容压力容器(封闭电器);

一一潜在失效模式为蠕变的压力容器和结构。

2 规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有 的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究 是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB 150-1998 钢制压力容器

228-2002	金属材料	室温拉伸试验	检方法(eqv ISO (6892 : 1998)		
229-1994	金属夏比缺	ロ冲击实验プ	方法(eqv ISO 148	8:1983)		
232—1999	金属材料	弯曲试验方法	토(eqv ISO 7438	:1985)		
699—1999	优质碳素结	构钢				
1172-1999	黑色金属码	更度及强度换	算值			
2038-1991	金属材料到	亚性断裂韧度	J_{IC} 试验方法			
2358—1994	金属材料。	裂纹尖端张开	位移试验方法			
2970—1991	中厚钢板	留声波检验方	法			
3077-1999	合金结构领	列(neq DIN E	N 10083-1:1991)		
3280-1992	不锈钢冷车	轧钢板				
31—1996	低温压力容暑	界田低合金钢	厚钢板			
61—1984	金属材料平面	ī应变断裂韧。	$g K_{IC}$ 试验方法			
4237—1992	不锈钢热车	轧钢板(neq Jl	S G4304:1984)			
98—1986	金属材料疲劳	与裂纹扩展速	率试验方法(eqv	ASTM E64	7:1995)	
54—1996	压力容器用砌	炭素钢和低合金	金钢厚钢板			
337—1998	钢制球形储	罐				
15970.6—1	998 金属和	合金的腐蚀	应力腐蚀试验	第6部分:	预裂纹试样的	制备和应用
	228—2002 229—1994 232—1999 699—1999 1172—1999 2038—1991 2358—1994 2970—1991 3077—1999 3280—1992 31—1996 61—1984 4237—1992 98—1986 54—1996 337—1998 15970. 6—1	228—2002 金属材料 229—1994 金属夏比缺 232—1999 金属材料 699—1999 优质碳素结 1172—1999 黑色金属码 2038—1991 金属材料码 2358—1994 金属材料码 2358—1994 金属材料码 3077—1999 合金结构码 3077—1999 合金结构码 31—1996 低温压力容器 61—1984 金属材料平面 4237—1992 不锈钢热码 98—1986 金属材料疲劳 54—1996 压力容器用码 337—1998 钢制球形储 15970.6—1998 金属和	228—2002 金属材料 室温拉伸试整 229—1994 金属夏比缺口冲击实验力 232—1999 金属材料 弯曲试验方法 699—1999 优质碳素结构钢 1172—1999 黑色金属硬度及强度换 2038—1991 金属材料延性断裂韧度 2358—1994 金属材料裂纹尖端张开 2970—1991 中厚钢板超声波检验方 3077—1999 合金结构钢(neq DIN E 3280—1992 不锈钢冷轧钢板 31—1996 低温压力容器用低合金钢力 61—1984 金属材料平面应变断裂韧力 4237—1992 不锈钢热轧钢板(neq JI 98—1986 金属材料疲劳裂纹扩展速差 54—1996 压力容器用碳素钢和低合差 337—1998 钢制球形储罐 15970.6—1998 金属和合金的腐蚀	 228—2002 金属材料 室温拉伸试验方法(eqv ISO 6 229—1994 金属夏比缺口冲击实验方法(eqv ISO 143 232—1999 金属材料 弯曲试验方法(eqv ISO 7438 699—1999 优质碳素结构钢 1172—1999 黑色金属硬度及强度换算值 2038—1991 金属材料延性断裂韧度 J_{IC}试验方法 2358—1994 金属材料裂纹尖端张开位移试验方法 2970—1991 中厚钢板超声波检验方法 3077—1999 合金结构钢(neq DIN EN 10083-1:1991 3280—1992 不锈钢冷轧钢板 31—1996 低温压力容器用低合金钢厚钢板 61—1984 金属材料平面应变断裂韧度 K_{IC}试验方法 4237—1992 不锈钢热轧钢板(neq JIS G4304:1984) 98—1986 金属材料疲劳裂纹扩展速率试验方法(eqv 54—1996 压力容器用碳素钢和低合金钢厚钢板 337—1998 钢制球形储罐 15970.6—1998 金属和合金的腐蚀 应力腐蚀试验 	 228—2002 金属材料 室温拉伸试验方法(eqv ISO 6892:1998) 229—1994 金属夏比缺口冲击实验方法(eqv ISO 148:1983) 232—1999 金属材料 弯曲试验方法(eqv ISO 7438:1985) 699—1999 优质碳素结构钢 1172—1999 黑色金属硬度及强度换算值 2038—1991 金属材料延性断裂韧度 J_{ic}试验方法 2358—1994 金属材料裂纹尖端张开位移试验方法 2970—1991 中厚钢板超声波检验方法 3077—1999 合金结构钢(neq DIN EN 10083-1:1991) 3280—1992 不锈钢冷轧钢板 31—1996 低温压力容器用低合金钢厚钢板 61—1984 金属材料平面应变断裂韧度 K_{ic}试验方法 4237—1992 不锈钢热轧钢板(neq JIS G4304:1984) 98—1986 金属材料疲劳裂纹扩展速率试验方法(eqv ASTM E6454—1996 压力容器用碳素钢和低合金钢厚钢板 337—1998 钢制球形储罐 15970.6—1998 金属和合金的腐蚀 应力腐蚀试验 第6部分: 	 228—2002 金属材料 室温拉伸试验方法(eqv ISO 6892:1998) 229—1994 金属夏比缺口冲击实验方法(eqv ISO 148:1983) 232—1999 金属材料 弯曲试验方法(eqv ISO 7438:1985) 699—1999 优质碳素结构钢 1172—1999 黑色金属硬度及强度换算值 2038—1991 金属材料延性断裂韧度 J_{IC}试验方法 2358—1994 金属材料裂纹尖端张开位移试验方法 2970—1991 中厚钢板超声波检验方法 3077—1999 合金结构钢(neq DIN EN 10083-1:1991) 3280—1992 不锈钢冷轧钢板 31—1996 低温压力容器用低合金钢厚钢板 61—1984 金属材料亚面应变断裂韧度 K_{IC}试验方法 4237—1992 不锈钢热轧钢板(neq JIS G4304:1984) 98—1986 金属材料疲劳裂纹扩展速率试验方法(eqv ASTM E647:1995) 54—1996 压力容器用碳素钢和低合金钢厚钢板 337—1998 钢制球形储罐 15970.6—1998 金属和合金的腐蚀 应力腐蚀试验 第6部分:预裂纹试样的

JB 4708-2000 钢制压力容器焊接工艺评定

JB 4710 钢制塔式容器

- JB 4726—2000 压力容器用碳素钢和低合金钢锻件
- JB 4727-2000 低温压力容器用碳素钢和低合金钢铸件
- JB 4728-2000 压力容器用不锈钢锻件
- JB 4730-1994 压力容器无损检测
- JB 4732—1995 钢制压力容器一分析设计标准

3 术语、定义与符号

3.1 术语、定义

3.1.1

超标缺陷 defect exceed standard

指超过有关压力容器制造或验收标准及法规、规章所规定的容许尺寸的缺陷。

3.1.2

断裂评定 fracture assessment

采用断裂力学的方法,评价含缺陷压力容器和结构能否排除断裂失效的安全评定。

3.1.3

塑性失效评定 plastic collapse assessment

采用塑性极限分析的方法,评价含缺陷压力容器和结构能否排除塑性失效的安全评定。

3.1.4

疲劳评定 fatigue assessment

评价含缺陷压力容器和结构在预期疲劳载荷的作用下,在所要求的继续使用期内能否排除疲劳失 效的安全评定。

3.1.5

缺陷表征 defect characterization

将实际缺陷按规则简化为一个简单几何形状的缺陷,称为缺陷表征或缺陷的规则化。经表征或规则化的缺陷尺寸称为表征缺陷尺寸。

3.1.6

等效裂纹尺寸 effective crack size, Equivalent crack size

在平面缺陷的简化评定中,按等应力强度因子的原则,将表征后的椭圆埋藏裂纹或半椭圆表面裂纹 用具有相等应力强度因子的穿透裂纹代替,该穿透裂纹的半长称为等效裂纹尺寸。

3. 1. 7

塑性极限载荷 plastic collapse load

采用极限分析方法,按理想塑性材料假设,以实际材料屈服强度和抗拉强度的平均值作为材料的流 变应力进行计算,所得到的该结构所能承受的最大载荷。

3. 1. 8

塑性屈服载荷 plastic yield load

采用极限分析的方法,按理想塑性材料假设,以实际材料屈服强度进行计算所得到的该结构所能承 受的最大载荷。

3.1.9

鼓胀效应 bulging effect

内压对壳面的作用力迫使缺陷部位壳体局部凸出,导致实际的裂纹尖端应力强度因子值高于未考虑局部凸出时计算所得的应力强度因子值,这一现象称为鼓胀效应。鼓胀效应所导致的应力强度因子 增大的放大倍数,称为鼓胀效应系数 Mg。

3.1.10

Α

ROR 材料 ROR material

应力应变关系满足 $\epsilon/\epsilon_s = \sigma/\sigma_s + \alpha(\sigma/\sigma_s)^n$ 的材料。

3.2 符号(未包括附录 F、G 和 H 中的特殊符号)

本标准所用的符号含义如下:

材料疲劳裂纹扩展速率与 ΔK 关系式中的系数, N "• mm $^{(1+3m/2)}$ • cycle $^{-1}$;

 A_{KV} 夏比 V 型缺口冲击功, J;

- a 平面缺陷规则化后的表征裂纹尺寸(穿透裂纹为其半长;二维缺陷为椭圆化后短轴长度的一半,即表面裂纹的深度、埋藏裂纹自身高度的一半、或角裂纹沿接管壁的深度),mm;
- *a*₁ 相邻两共面裂纹中较大者的 *a* 值, mm;
- a_2 相邻两共面裂纹中较小者的 a 值, mm;
- *a*_i 裂纹疲劳扩展后 *a* 的最终尺寸, mm;
- a_i 第 i 个疲劳(应力)循环后的 a 值, i=1,2,3,……,n,mm;
- *a*, 疲劳扩展分段计算法中第 *j* 计算段中裂纹尺寸 *a* 的平均值, *j*=1,2,3,.....,*u*, mm;
- a_0 疲劳分析初始裂纹的 a 值, mm;
- ā 简化评定中缺陷的等效裂纹尺寸, mm;
- \bar{a}_{m} 简化评定中缺陷的最大容许等效裂纹尺寸, mm;
- B 评定用壳体计算厚度,即扣除一个评定周期的内、外壁腐蚀量后的缺陷附近容器壳体壁 $[B=B_0-C_2)$, mm;
- B₁ 计算对接焊接接头中因错边引起的弯曲二次应力时,错边两侧的容器壁厚的较大值,mm;
- B2 计算对接焊接接头中因错边引起的弯曲二次应力时,错边两侧的容器壁厚的较小值,mm;
- B_{min} 接管内拐角至外拐角的距离, mm;
- B_n 评定用接管计算厚度,即扣除一个评定周期内外壁腐蚀量后的缺陷附近接管壁厚,mm;
- B_{no} 缺陷附近实测接管壁厚, mm;
- B₀ 缺陷附近实测容器壳体壁厚, mm;
- b 在计算对接焊接接头中因错边引起的弯曲二次应力的公式中,容器壁厚参数的指数项, 无量纲;
- C_2 一个评定周期内因内外壁介质腐蚀而导致的壁厚减薄量, mm;
- c 表征椭圆埋藏裂纹或半椭圆表面裂纹在沿壳体表面方向的半长, mm;

 c_1 相邻两共面裂纹中较大者的 c 值, mm;

- c_2 相邻两共面裂纹中较小者的 c 值, mm;
- *c*_f 裂纹疲劳扩展后 *c* 的最终尺寸, mm;
- c_i 第 *i* 个疲劳(应力)循环后的 c 值, mm;
- c_i 疲劳扩展分段计算法中第 j 计算段中裂纹尺寸 c 的平均值, $j=1,2,3,\dots,u$, mm;
- c₀ 疲劳分析初始裂纹的 c 值, mm;
- D 容器平均直径, mm;
- D_i 容器内直径, mm;
- D_{in} 接管内直径, mm;

n	按德亚协直经 mm.
D _n	
D _{on}	告 篇/1 頁 [2] ,
d d	疲劳评定时,大小不同的应力变化范围的种数,无量级,
d'	
	的方法仍然所以这个工作的发展的一些。mm,
dt	在某指定温度和指定应力下的工作时间。1.
da/dt	应力腐蚀裂纹扩展速率, mm/s :
E	在评定温度下的材料弹性模量, MPa:
e	表征埋藏椭圆裂纹中心偏离壁厚中心的偏心距,mm;
<i>e</i> ₁	错边量,mm;
${F}_{ m ch}$	接管拐角裂纹的边界修正因子,无量纲;
f .	f_{b} 及 f_{m} 的总称,无量纲,
f_{b}	f ⁴ 及 f ² 的总称,无量纲;
$f^{ m A}_{ m b}$	计算由弯曲应力 σ _в 引起的裂纹尺寸 a 方向裂纹尖端处应力强度因子时所用的裂纹构
	形因子,无量纲;
f_{b}^{B}	计算由弯曲应力 σ _в 引起的裂纹尺寸 <i>c</i> 方向裂纹尖端处应力强度因子时所用的裂纹构
	形因子,无量纲;
$f_{ m ec}$	计算拐角裂纹的 K ₁ 时所用的因子,无量纲;
f_{m}	f_{n}^{A} 及 f_{n}^{B} 的总称,无量纲;
$f_{\mathrm{m}}^{\mathrm{A}}$	计算由薄膜应力 σ 引起的裂纹尺寸 a 方向裂纹尖端处应力强度因子时所用的裂纹构
	形因子,无量纲;
$f^{ m B}_{ m m}$	计算由薄膜应力 σ _m 引起的裂纹尺寸 c 方向裂纹尖端处应力强度因子时所用的裂纹构
	形因子,无量纲;
G	相邻两裂纹间弹塑性干涉效应系数,无量纲,
G_0	综合描述凹坑缺陷尺寸的参数,无量纲;
$G_{0,\max}$	$G_{\rm o}$ 的容许极限值,无量纲;
h	缺陷沿板厚方向的实测最大自身高度, mm;
hw	填角焊缝焊脚尺寸, mm;
i	d 种应力变化范围的各自代号, $i=1,2,3,\cdots,d,$ 无量纲;
J	J 积分值,N/mm;
J _c	材料稳定裂纹扩展量 $\Delta a < 0.2 \text{ mm}$,即发生脆断或突进时所对应的脆断点或突进点的
_	材料 J 积分断裂韧度, N/mm;
J _{IC}	材料稳定裂纹扩展量 $\Delta a > 0.2 \text{ mm}$ 时,对应于 $\Delta a = 0.2 \text{ mm}$ 的材料 J 积分断裂韧度,
	N/mm;
J is	按金相剖面法测得的材料 J 积分断裂韧度,N/mm;
$J_{\rm R}(\Delta a)$	材料的 J 阻力曲线, N/mm;
j V	裂纹扩展分成 u 段计算的段次, $j=1,2,3,\dots,u$,无量纲;
κ _c	以应力强度因于表示材料的断裂韧度,或由 J 积分断裂韧度/CTOD断裂韧度换算的
V	以 $应刀强度因于表示的材料断裂韧度, N/mm^{3/2};$
K I	上型应力强度因于,N/mm ^{°/} ;
$\kappa_{\pm c}$	材料的半面应变断裂韧度,N/mm ^{3/2} ;

$K_{1\rm SCC}$	材料在相应介质环境下产生应力腐蚀开裂的界限应力强度,N/mm ^{3/2} ;
K_{P}	平面缺陷常规评定中考虑了分安全系数后,以应力强度因子表示的材料断裂韧度,
	$N/mm^{3/2}$;
Kr	平面缺陷常规评定用断裂比,指施加载荷作用下的应力强度因子与以应力强度因子表
	示的材料断裂韧度的比值,无量纲;
K_{t}	应力集中系数,无量纲;
K_1^{P}	一次应力引起的应力强度因子,N/mm ^{3/2} ;
K_1^{S}	二次应力引起的应力强度因子,N/mm ^{3/2} ;
k	两凹坑间的最小间距, mm;
L	板长度的一半, mm;
L	载荷比,指引起一次应力的施加载荷与塑性屈服极限载荷的比值,表示载荷接近于材料
	塑性屈服极限载荷的程度,无量纲;
$L_{\mathbf{w}}$	有焊趾裂纹或填角焊焊根裂纹的焊接接头上两相邻对称焊趾间的距离,mm;
L_{r}^{\max}	L, 的容许极限,无量纲;
l	平面缺陷沿壳体自由表面方向的实测最大长度,mm;
ι'	计算对接焊接接头中因角变形引起的弯曲二次应力时,在与焊缝垂直的截面上,角变形
	两直边段总跨度, mm;
Μ	相邻两裂纹间的线弹性干涉效应系数,无量纲;
M_{g}	鼓胀效应系数,无量纲,
m	疲劳裂纹扩展速率与 ΔK 关系式中的指数,无量纲;
Ν	恒幅疲劳应力循环总次数,cycle;
n	ROR 材料的应力应变关系式中的指数项,无量纲;
n_i	表示($\Delta \sigma_{m}$),及($\Delta \sigma_{B}$),的应力变化范围的循环次数,cycle;
P	一次应力, MPa;
P_{b}	一次弯曲应力, MPa;
$P_{\tt L}$	以材料流变应力值进行极限分析所得到的结构塑性极限载荷, MPa;
$P_{\rm m}$	一次薄膜应力, MPa;
P.	以材料屈服强度值进行极限分析所得到的结构塑性屈服载荷, MPa;
þ	安全评定要求的容器工作压力, MPa;
p_1 , p_2	埋藏缺陷距壳板两表面的距离,且 $p_1 < p_2$, mm;
p_{L}	含凹坑缺陷的容器的塑性极限载荷, MPa;
$p_{\rm Lo}$	与含凹坑缺陷的容器材料及尺寸相同的无缺陷承压元件的塑性极限载荷, MPa;
p_{\max}	已经计人安全裕度的含凹坑缺陷的容器最大容许工作压力, MPa;
Q	二次应力, MPa;
$Q_{ m b}$	二次弯曲应力, MPa;
$oldsymbol{Q}_{\mathrm{m}}$	二次薄膜应力, MPa;
R	容器平均半径, mm;
R _i	容器内半径, mm;
R_{in}	接管内半径, mm;
R _n	接管平均半径, mm;
R _o	容器外半径, mm;
R_{on}	接管外半径, mm;

R,	应力比,指应力循环中最小应力与最大应力之比,无量纲;
r	容器壁上任意点的半径,mm;
$(S^3N)_x$	工况要求承受的疲劳强度参量,N ³ /mm ⁶ ・cycle;
$(S^3N)_y$	缺陷容许承受的疲劳强度参量,N ³ /mm ⁶ ・cycle;
5	两共面裂纹间的间距, mm;
S ₀	判别两共面裂纹是否应合并的临界间距,mm;
<i>s</i> ₁	两共面裂纹之间沿壁厚方向的最短距离,mm;
s ₂	两共面裂纹之间沿壳壁表面方向的最短距离, mm;
S ₃	两非共面裂纹面之间的最短距离, mm;
Т	温度,℃;
T_{o}	可忽略材料蠕变效应的温度,℃;
t	时间,h;
t(T)	在指定温度 T 和指定应力下产生特定断裂应变值的蠕变寿命,h;
u	裂纹疲劳扩展分段计算法中 n; 的分段段数,无量纲;
W	试样宽度的一半, mm;
w	角变形量,mm;
X	规则化后椭球形凹坑在壳壁表面的椭圆长轴尺寸的一半, mm;
X_1	相邻两凹坑中较大者的 X 值, mm;
X_2	相邻两凹坑中较小者的 X 值, mm;
$X_{\mathfrak{b}}$	平面缺陷简化评定用弯曲应力折合为当量拉伸应力的折合系数,无量纲;
X _r	平面缺陷简化评定用焊接残余应力折合为当量拉伸应力的折合系数,无量纲;
X_{\max}	规则化后最大容许凹坑长轴的一半,mm;
Y	规则化后椭球形凹坑在壳壁表面的椭圆短轴尺寸的一半, mm;
Y_1	相邻两凹坑中较大者的 Y 值, mm;
Y_2	相邻两凹坑中较小者的 Y 值, mm;
$Y_{ m max}$	规则化后最大容许凹坑短轴尺寸的一半, mm;
У	计算对接焊接接头中因角变形引起的弯曲二次应力时,在与焊缝垂直的截面上,角变形
	直边段在壁厚方向上的投影长度,mm;
Z	规则化后椭球形凹坑的深度,mm;
Zmex	规则化后最大容许凹坑的深度, mm;
ΔK	裂纹尖端应力强度因子变化范围,N/mm ^{3/2} ;
ΔK_{u}	a 方向裂纹尖端处的 ΔK , N/mm ^{3/2} ;
ΔK_c	c 方向裂纹尖端处的 ΔK , N/mm ^{3/2} ;
$(\Delta K_a)_{i=1}$	$\mathcal{B}(\Delta \sigma_{\mathrm{m}})_{i}, (\Delta \sigma_{\mathrm{B}})_{i}$ 计算的 a 方向裂纹尖端处的 $\Delta K, \mathrm{N/mm}^{3/2};$
$(\Delta K_c)_{i=1}$	
$[(\Delta K_a)_i]_{j=1}$	\mathcal{L} $a = a_{j-1}, c = c_{j-1} \mathcal{D}(\Delta \sigma_{\mathrm{m}})_i, (\Delta \sigma_{\mathrm{B}})_i$ 计算的 a 方向裂纹尖端处的 $\Delta K, \mathrm{N/mm}^{3/2};$
$\lfloor (\Delta K_c)_i \rfloor_{j=1}$	按 $a=a_{j-1}, c=c_{j-1}$ 及($\Delta\sigma_{m}$), ($\Delta\sigma_{B}$), 计算的 c 方向裂纹尖端处的 ΔK , N/mm ^{3/2} ;
$\Delta K_{ m th}$	应力强度因子变化范围的门槛值,N/mm ^{3/2} ;
$(\Delta P_{\rm b})_i$	一次应力的($\Delta\sigma_{\rm B}$), MPa;
$(\Delta P_{\rm m})_i$	一次应力的 $(\Delta \sigma_{\rm m})_i$, MPa;
Δp	压力波动变化范围, MPa;
$(\Delta Q_{\rm b})_i$	二次应力的(Δσ _B),,MPa;

$(\Delta Q_{\rm m})_i$	二次应力的(Δσ _m),,MPa;
ΔT	内外壁温差,℃;
$\Delta \sigma$	应力变化范围,等于 Δσ _m 与 Δσ _B 之和,及 Δσ ₁ 和 Δσ ₂ 中的较大值,MPa;
$(\Delta \sigma)_i$	第 i 种应力变化范围, i=1,2,3,, d, MPa;
$\Delta \sigma_{\! 1}$, $\Delta \sigma_{\! 2}$	截面上应力变化范围分布经线性化处理后得到的内、外壁上的应力变化范围值, MPa;
$\Delta \sigma_{ m B}$	弯曲应力分量变化范围, MPa;
$\Delta \sigma_{ m m}$	薄膜应力分量变化范围, MPa;
$(\Delta \sigma)_{\min}$	可忽略的应力变化范围的上限值, MPa;
$(\Delta \sigma_{\rm m})_i$	第 i 种薄膜应力分量变化范围, MPa;
$(\Delta \sigma_{\rm B})_i$	第 i 种弯曲应力分量变化范围, MPa;
α	ROR 公式中的系数项,无量纲;
α'	计算对接焊接接头中因角变形引起的弯曲二次应力时,在与焊缝垂直的截面上,角变形
	直边段与壳体表面方向所形成的锐角,rad;
β	计算对接焊接接头中因角变形引起的弯曲二次应力时所使用的中间参量,rad;
δ	裂纹尖端张开位移(CTOD)值,mm;
$\delta_{ m c}$	裂纹稳定扩展 $\Delta a < 0.2 \text{ mm}$,即发生脆断或突进时所对应的脆断点或突进点的材料
	CTOD 断裂韧度, mm;
$oldsymbol{\delta}_{ ext{i}}$	材料稳定裂纹扩展量 $\Delta a > 0.2 \text{ mm}$ 时,对应于 $\Delta a = 0.2 \text{ mm}$ 时材料的 CTOD 断裂韧
	度,mm;
$\delta_{_{\mathrm{is}}}$	按金相剖面法测定的材料 CTOD 断裂韧度, mm;
δ_r	平面缺陷简化评定用断裂比,指在施加应力作用下的裂纹尖端张开位移与材料的张开
	位移断裂韧度的比值,无量纲;
ν	泊松比,无量纲;
ρ	平面缺陷常规评定中计算二次应力的塑性修正因子,无量纲;
σ	应力, MPa;
σ_1 , σ_2	截面上的应力分布经线性化处理后在内、外壁上的应力值, MPa;
$\sigma_{0,2}$	条件屈服强度,即材料拉伸残余应变量为 0.2%时所对应的应力值, MPa;
$\sigma_{ m B}$	由应力分布线性化规则得到的弯曲应力(由 P 引起的称 P_b ,由 Q 引起的称 Q_b), MPa;
$\sigma_{ m b}$	评定温度下材料的抗拉强度, MPa;
σ_{n}	净截面应力, MPa;
$\sigma_{ m m}$	薄膜应力(由 P 引起的称 P_m ,由 Q 引起的称 Q_m), MPa;
$\sigma_{ m R}$	焊接残余应力, MPa;
$\sigma_{ m R}^{ m max}$	焊接残余应力 σ _R 在截面上的最大值, MPa;
$\sigma_{ m s}$	评定温度下的材料屈服点,也可用其条件屈服强度 σ _{0.2} 代替, MPa;
$\sigma^{\rm w}_{ m s}$	评定温度下的焊缝金属的屈服点,也可用其条件屈服强度 og_2代替, MPa;
σ_{i}	温度应力, MPa;
σ_{Σ}	平面缺陷简化评定中使用的总当量拉伸应力, MPa;
$\sigma_{\Sigma 1}$	平面缺陷简化评定中,由一次膜应力 P _m 及局部应力集中引起的当量拉伸应力, MPa;
σ_{Σ^2}	平面缺陷简化评定中,由面外弯曲应力 P。引起的当量拉伸应力, MPa;
σ_{Σ^3}	平面缺陷简化评定中,由焊接残余应力引起的当量拉伸应力,MPa;
$\overline{\sigma}$	评定温度下材料的流变应力, MPa;

 σ 评定温度下材料的流动应力, MPa;

 Ψ_1 平面缺陷常规评定中,为计算 K_r 所涉及的塑性修正因子 ρ 时的中间参量,无量纲;

θ,φ 角度,(°);

Φ 椭圆裂纹形状因子,无量纲。

η 表面裂纹或埋藏裂纹的裂纹尖端离壳壁表面的最近距离, mm;

 Γ 平面缺陷简化评定中,计算角变形及错变量的应力集中的中间参量,无量纲;

- ε 应变,无量纲;
- ε, 屈服应变,无量纲;

 ϵ_{Σ} 平面缺陷简化评定中,相应于总当量拉伸应力的应变,无量纲。

4 总论

4.1 总则

采用本标准进行压力容器安全评定除应遵循本标准的规定外,还应遵守国家有关部门颁布的相关 法律、法规和规章。

4.2 资格与职责

4.2.1 资格

4.2.1.1 进行压力容器安全评定的单位和人员的资格,应符合国家有关法律、法规和规章的规定。

4.2.1.2 在压力容器安全评定中,进行无损检测的人员应持有与实际使用的无损检测方法相一致的Ⅲ 级资格证书,且具有较丰富的缺陷判别及缺陷尺寸(包括自身高度)测定的经验。

4.2.2 职责

4.2.2.1 进行安全评定的单位,应根据所评定对象的缺陷性质、缺陷成因、使用工况以及对缺陷扩展的预测等,对所评定的对象给出明确的评定结论和继续使用的条件。

4.2.2.2 进行安全评定的单位,应对所评定对象的缺陷检验结果和评定结论的正确性负责。安全评定的实施程序应符合本标准和相关法规、规章的有关规定。

4.3 安全评定的准则与要求

4.3.1 安全评定的一般原则

安全评定应包括对评定对象的状况调查(历史、工况、环境等)、缺陷检测、缺陷成因分析、失效模式 判断、材料检验(性能、损伤与退化等)、应力分析、必要的实验与计算,并根据本标准的规定对评定对象 的安全性进行综合分析和评价。

4.3.2 失效模式判别

4.3.2.1 失效模式的类型

本标准考虑下列类型的失效模式:

- ——断裂失效;
- ——塑性失效;
- ——疲劳失效。

4.3.2.2 失效模式的判断

判断失效模式应依据同类压力容器或结构的失效分析和安全评定案例与经验、对被评定的压力容器或结构的具体的制造和检验资料、使用工况以及对缺陷的理化检验和物理诊断结果,且对可能存在的腐蚀、应力腐蚀、高温蠕变环境等对失效模式和安全评定的影响也应予以充分地考虑。

4.3.3 安全评定方法的选择

安全评定方法的选择应以避免在规定工况(包括水压试验)下安全评定期内发生各种模式的失效而

导致事故的可能为原则。一种评定方法只能评价相应的失效模式,只有对各种可能的失效模式进行判 断或评价后,才能作出该含有超标缺陷的容器或结构是否安全的结论。

4.3.4 安全评定所需的参考资料和基础数据

4.3.4.1 安全评定所需的参考资料有:

一一压力容器制造竣工图及强度计算书;

- ——压力容器制造验收的有关资料,包括材料数据、焊接记录、返修记录、无损检测资料、热处理报告、检验记录和压力试验报告等;
- ——压力容器运行状况的有关资料,包括介质情况、工作温度、载荷状况、运行和故障记录及历次检验与维修报告等。

4.3.4.2 安全评定所需的基础数据有:

- ——缺陷的类型、尺寸和位置;
- ——结构和焊缝的几何形状和尺寸;
- 一一材料的化学成分、力学和断裂韧度性能数据;
- -----由载荷引起的应力;
- ——残余应力。

4.4 安全评定中的基础工作

4.4.1 缺陷检测

应根据安全评定的要求,对被评定对象可能存在的各种缺陷、材料和结构等合理选择有效的检测方 法和设备进行全面的检测并确保缺陷检测结果准确、真实、可靠。

对于无法进行无损检测的部位存在缺陷的可能性应有足够的考虑,安全评定人员和无损检测人员 应根据经验和具体情况作出保守的估计。

4.4.2 应力分析

应力分析应考虑各种可能的载荷,并根据具体失效模式的安全评定需要和评定方法,采用成熟、可 靠的方法计算评定中所需的应力。

4.4.3 材料性能的测试和性能数据的获得

材料性能的测试和性能数据的获得应按有关标准和本标准附录 B 的规定。应充分考虑材料性能 数据的分散性并按偏于保守的原则确定所需的材料性能数值。

4.5 评定结论与报告

4.5.1 缺陷评定完成后,评定单位应依据国家相关法规、规章和本标准的规定,及时出具完整的评定报告并给出明确的评定结论和继续使用的条件。

4.5.2 评定报告一般应包括以下内容:

——被评定对象的设计、制造、安装、使用等基本情况和数据;

-----缺陷检验数据;

一一材料性能数据测试或选用;

——应力状况、应力测试和应力分析;

——综合安全评价与评定结论。

4.5.3 评定报告应准确无误,由评定人员签字、评定单位技术负责人审查和法人代表批准并加盖评定 单位的有效印章。

5 断裂与塑性失效评定

本章给出了平面缺陷和体积缺陷的断裂与塑性失效安全评定方法。

5.1 评定方法的分类

本章所规定的评定方法,依据评定对象的缺陷类型和评定准则的不同,分为下列类型:

- ——平面缺陷的简化评定(简称简化评定);
- ——平面缺陷的常规评定(简称常规评定);
- ——凹坑缺陷的评定(简称凹坑评定);
- ——气孔和夹渣缺陷的评定(简称气孔夹渣评定)。

对于平面缺陷,可采用简化评定或常规评定方法进行,当二者的评定结果发生矛盾时,以常规评定 结果为准。在特殊和可能的情况下,也可按附录 F 所提供的分析评定方法进行更为详尽的分析评定。

5.2 安全系数

常规评定所采用的安全系数见表 5-1。其他评定方法所采用的安全系数,按各相应章节的规定选取。

上 拗 戶用	缺陷表征尺寸	材料断裂韧度分	应力分	安全系数
入双后未	分安全系数	安全系数	一次应力	二次应力
一般	1.0	1.1	1.2	1.0
严重	1.1	1. 2	1.5	1.0

表 5-1 常规评定安全系数取值

5.3 缺陷的表征

5.3.1 平面缺陷的表征

5.3.1.1 安全评定时,一般应按本节规定对实测的平面缺陷进行规则化表征处理,将缺陷表征为规则 的裂纹状表面缺陷、埋藏缺陷或穿透缺陷。表征后裂纹的形状为椭圆形、圆形、半椭圆形或矩形。

5.3.1.2 表征裂纹尺寸应根据具体缺陷情况由缺陷外接矩形之高和长来确定。对穿透裂纹,长为2a; 对表面裂纹,高为a、长为2c;对埋藏裂纹,高为2a、长为2c;对孔边角裂纹,高为a、长为c(见图5-1)。缺 陷外接矩形之长边应与邻近的壳体表面平行。

a 穿透裂纹

c 表面裂纹

d 孔边角裂纹

图 5-1 平面缺陷的表征图例

若缺陷沿壳体表面方向的实测最大长度为 l,沿板厚方向的实测最大深度为 h(见图 5-2),则:5.3.1.3.1 当 h>0.7 B 时,规则化为长 2a=l+2h 的穿透裂纹(见图 5-2a); 5.3.1.3.2 当 $h\leq 0.7$ B 时,

- a) h < l/2 时,规则化为 c = l/2、a = h 的半椭圆表面裂纹(见图 5-2b);
- b) h≥l/2 时,对于断裂评定,规则化为 c=a=h 的半圆形表面裂纹(见图 5-2c);对疲劳评定,规则化为 c=l/2、a=h 的半椭圆表面裂纹(见图 5-2d)。

5.3.1.4 埋藏裂纹的规则化和表征裂纹尺寸

若缺陷沿壳体表面方向的实测最大长度为 l_1 沿板厚方向的实测最大自身高度为 h_1 缺陷到壳体内 外表面的最短距离分别为 p_1 和 p_2 ,且 $p_1 \leq p_2$ (见图 5-3),则:

5.3.1.4.1 当 $p_1 \leq p_2 < 0.4 h$ 时,规则化为 2a = l + 2h 的穿透裂纹(见图 5-3a);

5.3.1.4.2 当 $p_1 < 0.4 h \le p_2$ 时,规则化为 $a = h + p_1 \cdot 2c = l$ 的半椭圆表面裂纹(见图 5-3b);

- 5.3.1.4.3 当 0.4 $h \leq p_1 \leq p_2$ 时:
 - a) h < l时,规则化为 2c = l, 2a = h的椭圆形埋藏裂纹(见图 5-3c);
 - b) h≥l时,对于断裂评定,规则化为 2c=2a=h 的圆形埋藏裂纹(见图 5-3d);对于疲劳评定,规则化为 2c=l,2a=h 的椭圆埋藏裂纹(见图 5-3e);

5.3.1.4.4 已表征为表面裂纹的埋藏缺陷,即使 2a+p1>0.7 B,也不再表征为穿透裂纹。

5.3.1.5 穿透缺陷的规则化和表征裂纹尺寸

若穿透缺陷沿壳体表面方向的实测最大长度为 1,则规则化为 2a=1 的穿透裂纹(见图 5-4)。

图 5-4 穿透缺陷的规则化图例

5.3.1.6 斜裂纹的表征

当裂纹平面方向与主应力方向不垂直时,可将裂纹投影到与主应力方向垂直的平面内,在该平面内 按投影尺寸确定表征裂纹尺寸。

5.3.1.7 裂纹群的处理

5.3.1.7.1 一般原则

当两裂纹或多裂纹相邻时,应考虑裂纹之间的相互影响。可先按本款的规定确定裂纹间的距离 s 和合并临界间距 s₀,然后根据情况分别作出合并(复合)、考虑相互影响或忽略相互影响的处理。 5.3.1.7.2 裂纹间距 s 及合并间距 s₀ 的确定

图 5-5 给出的共面裂纹的合并规则中,裂纹间距 s 及合并间距 so 的确定原则和典型情况:

- a) 在图 5-5a 中, $s=s_2$, $s_0=2c_2$;
- b) 在图 5-5b、5-5c、5-5d 中,若 $\frac{s_1}{2a_2} > \frac{s_2}{2c_2}$,则 $s = s_1$, $s_0 = 2a_2$;否则 $s = s_2$, $s_0 = 2c_2$;
- c) 在图 5-5e 中, s=s₂, s₀=2a₂。

图 5-5 共面缺陷的合并规则图例

GB/T 19624-2004

- 5.3.1.7.3 共面裂纹的复合及相互影响处理
 - a) 若 s≪s₀,则用包络该两裂纹(或两个以上 s≪s₀ 的裂纹)的外切矩形将其复合,规则化为一个裂纹。复合后的裂纹不再表征,也不再与其他裂纹或复合裂纹复合。复合后的裂纹与其他裂纹或复合裂纹之间的相互影响按 b)或 c)的规定确定。
 - b) 若 s₀ < s < 5s₀,则两裂纹不必合并,分别按单个裂纹评定,但要考虑其相互间的影响。即在简 化评定中,计算的√δ,值要乘以1.2的系数;常规评定中,在计算 K,时要将应力强度因子乘以 弹塑性干涉效应系数 G;疲劳评定中,在计算 ΔK 时要乘以线弹性干涉效应系数 M。上述 G 值及 M 值的计算方法见附录 A 的规定。
 - c) 若 s≥5s₀,则可忽略其相互影响,分别作为单个裂纹进行评定。
- 5.3.1.7.4 非共面裂纹的处理
 - a) 两未穿透裂纹相邻而不共面。当两裂纹面之间的最小距离 s₃ 小于较小的表征裂纹尺寸 a₂ 的 2 倍时,即 s₃ <2a₂,则这两条裂纹可视为共面。
 - b) 两穿透裂纹相邻而不共面。当两裂纹面之间的最小距离 s₃ 小于较小的表征裂纹尺寸 a₂ 的 2 倍时,即 s₃ <2a₂,则这两条裂纹可视为共面。
 - c) 一条穿透裂纹和一条未穿透裂纹相邻而不共面。当两裂纹面之间的最小距离 s₃ 小于较小的 表征裂纹长度时,即 s₃ < 2c₂(或 s₃ < 2a₂),则这两条裂纹可视为共面。
 - d) 非共面裂纹规则化为共面裂纹后,还应考虑裂纹之间的相互影响。
 - e) 凡不能视为共面裂纹处理的非共面裂纹,均应逐个各自进行评定。

5.3.2 体积缺陷的表征

5.3.2.1 单个凹坑缺陷的表征

表面的不规则凹坑缺陷按其外接矩形将其规则化为长轴长度、短轴长度及深度分别为 2X、2Y 及 Z 的半椭球形凹坑。其中,长轴 2X 为凹坑边缘任意两点之间的最大垂直距离,短轴 2Y 为平行于长轴且 与凹坑外边缘相切的两条直线间的距离,深度 Z 取凹坑的最大深度(见图 5-6)。

图 5-6 单个凹坑缺陷表征示意图

5.3.2.2 多个凹坑缺陷的表征

当存在两个以上的凹坑时,应分别按单个凹坑进行规则化并确定各自的凹坑长轴。若规则化后相 邻两凹坑边缘间最小距离 k 大于较小凹坑的长轴 2X₂,则可将两个凹坑视为互相独立的单个凹坑分别 进行评定。否则,应将两个凹坑合并为一个半椭球形凹坑来进行评定,该凹坑的长轴长度为两凹坑外侧 边缘之间的最大距离,短轴长度为平行于长轴且与两凹坑外缘相切的任意两条直线之间的最大距离,该 凹坑的深度为两个凹坑的深度的较大值(见图 5-7)。

图 5-7 多个凹坑缺陷表征示意图

5.3.2.3 气孔和夹渣缺陷的表征

5.3.2.3.1 气孔用气孔率表征。气孔率是指在射线底片有效长度范围内,气孔投影面积占焊缝投影面 积的百分比。射线底片有效长度按 JB 4730—1994 的规定确定,焊缝投影面积为射线底片有效长度与 焊缝平均宽度的乘积。

5.3.2.3.2 条形夹渣以其在射线底片上的长度表征。多个夹渣相邻时,应按下述原则考虑夹渣间的相 互影响:

a) 共面夹渣间的复合

若两个夹渣间的距离小于图 5-8 中的规定值,则将其复合为一个连续的大夹渣。

b) 非共面夹渣的处理

当两个非共面埋藏夹渣之间的最小距离 s₃ 小于较小夹渣的自身高度的一半时,则这两个夹渣可以 视为共面并按 a)的规定进行复合。否则,均应逐个分别进行评定。

c) 复合后的夹渣不再与其他夹渣或复合夹渣进行复合。

5.3.2.3.3 将气孔和夹渣视为平面缺陷进行评定时,应按 5.3.1 的规定进行缺陷的表征。

5.4 平面缺陷评定中所需应力的确定

5.4.1 评定中应考虑的载荷、应力及其分类

5.4.1.1 评定中应考虑下列载荷及其产生的应力:

一一介质的压力及其产生的应力;

- 一一介质和结构的重力载荷及其产生的应力;
- ——外加机械载荷及其产生的应力:
- ---振动、风载等载荷及其产生的应力;
- ——焊接引起的焊接残余应力;

一一错边、角变形、壁厚局部减薄、不等厚度等结构几何不连续在载荷作用时所产生的应力;

——温度差、热胀冷缩不协调等所产生的热温差应力或热应力;

——其他应该考虑的载荷或应力。

图 5-8 多个夹渣的复合准则图例

5.4.1.2 安全评定的应力分类规则

应根据应力的作用区域和性质,将其划分为一次应力 P、二次应力 Q。除下列特殊规定外,按 JB 4732—1995 确定应力分类的规则:

——由于管系的热膨胀在接管处引起的应力,按一次应力考虑;

一一焊接产生的残余应力,按二次应力考虑;

——由错边、角变形、局部厚度差所引起的局部应力,按二次应力考虑;

——由壁温温度差或材料热膨胀系数不同引起的热应力,按二次应力考虑。

5.4.2 应力确定

5.4.2.1 在评定中所取用的应力是缺陷部位的主应力。计算该主应力时采用线弹性计算方法,并假设 结构中不存在缺陷。

5.4.2.2 应按 5.4.1 考虑各种载荷,分别计算被评定缺陷部位结构沿厚度截面上一次应力及二次应力 分布,如图 5-9 中的实线所示,然后将非线性分布的应力按 5.4.2.3 规定进行缺陷区域的应力线性化 处理。

5.4.2.3 缺陷区域的应力线性化规则

对于沿厚度非线性分布的应力,应根据保证在整个缺陷长(或深)度范围内各处的线性化应力值均 不低于实际应力值的原则确定沿缺陷部位截面的线性分布应力,如图 5-9 中虚线所示。 表面缺陷所在区域的应力线性化图例:

埋藏缺陷所在区域的应力线性化图例:

图 5-9 断裂评定中缺陷所在区域的应力线性化图例

5.4.2.4 应力的分解和 P_m、P_b、Q_m、Q_b的确定

5.4.2.4.1 对于沿厚度直线分布或经线性化处理后的应力,可按下式分解为薄膜应力分量 σ_m 和弯曲 应力分量 σ_b:

$$\sigma_{\rm m} = (\sigma_1 + \sigma_2)/2$$
$$\sigma_{\rm B} = (\sigma_1 - \sigma_2)/2$$

由一次应力分解而得的 $\sigma_m, \sigma_B, 分别为 P_m, P_b;$ 由二次应力分解而得的 $\sigma_m, \sigma_B, 分别为 Q_m, Q_b$ 。 5.4.2.4.2 如已知焊接残余应力 σ_R 的实际分布,则按其实际分布确定 σ_m, σ_B 并用于评定计算。如不能得到焊接残余应力的实际应力分布,可参照表 5-2 的规定确定应力分布或 Q_m, Q_b 。

焊接	接头	残余应力 o _R 分布示意图	σ _R 分布或 Q _m 、Q _b 的确定				
<i>B</i> <25 mm 的 对接焊接头	作用在垂直 于焊缝的平 面上的 σ _R 分 布,用于垂直 焊缝的缺陷	$\sigma_{\rm R}/\sigma_{\rm R}^{\rm pax} = 0.5$	$\frac{\sigma_{R}}{\sigma_{R}^{max}} = [1 - 4(x/6B)^{2}] \exp[-2$ (x/6B) ²] 并假设沿厚度均匀分布 这里取拉伸应力区宽度为6B				
	作用在平行 于焊缝的平 面上的 σ _R 分 布,用于平行 焊缝的缺陷		$\sigma_{\rm R} = 0.3 \sigma_{\rm R}^{\rm max}$,均布于截面上 即 $Q_{\rm m} = 0.3 \sigma_{\rm R}^{\rm max}$, $Q_{\rm b} = 0$				

表 5~2 岩十典型焊接接头统余应刀分布和估】	寘例
-------------------------	----

表 5-2(续)

焊接	接头	残余应力 o _R 分布示意图	σ _R 分布或 Q _m 、Q _b 的确定
B≥25 mm 的	筒体环焊缝 等低约束对 接焊缝, σ _R 沿 板厚的分布	$B = \frac{\sigma_{\rm R}}{\sigma_{\rm R}} \sigma_{\rm R}$	表面裂纹 $a/B \leq 0.5$ 时, $Q_m = -\sigma_R^{max}$, $Q_b = 2\sigma_R^{max}$;其他情况按线性化规则确定
对接焊接头	球罐、厚壁高 压容器,σ _R 沿 板厚的分布	$\frac{1}{0}$	表面裂纹 <i>a/B</i> ≪0.5 时,Q _m =0, Q _b = σ _R ^{max} ;其他情况按线性化规 则确定
角焊缝、T型 对接焊缝及 接管连接焊 缝在焊趾处 路容器相趾	接管焊趾裂纹	$\sigma_{\rm D}/\sigma_{\rm R}^{\rm max}$	接 管 焊 趾 裂 纹 时 取 Q _m = 0.5σ ^{max} , Q _b = 0.5σ ^{max} ;其他情况按线性化 规则确定
及 谷 紹 坪 血 处裂纹	容器焊趾裂纹		$Q_{m} = \sigma_{R}^{max}, Q_{b} = 0$

5.4.2.4.3 表 5-2 中的 σ_{R}^{max} 按如下规则确定:

对于焊态结构, $\sigma_{R}^{max} = max(\sigma_{s}^{W}, \sigma_{s});$

对于经炉内整体消除应力退火热处理的焊接结构, $\sigma_{R}^{max} = (0.3 \sim 0.5) \max(\sigma_{s}^{w}, \sigma_{s});$

对于经局部消除应力退火热处理或现场整体热处理的焊接结构,可实测确定或依据经验确定。

5.4.2.4.4 对焊接修补区、高拘束度焊缝区或焊接残余应力分布情况不明区域,可取焊接残余应力引起的二次应力 $Q_m = \sigma_s$, $Q_b = 0$ 。

5.4.2.4.5 由错边、角变形所产生的应力为二次应力 Q。,可按表 5-3 中所列公式进行计算。

类	型	细节图	二次应力 Q _b	注 释
容器,	焊缝的 变形	y d' Pm 2l' Pm 2l'为两直边段总跨度	设边界条件为: 固支: $\frac{Q_b}{P_m} = \frac{3d'}{B(1-v^2)} \frac{\tanh(\beta/2)}{\beta/2}$ 铰支: $\frac{Q_b}{P_m} = \frac{6d'}{B(1-v^2)} \frac{\tanh\beta}{\beta}$ 式中 $\beta = \frac{2l'}{B} \sqrt{\frac{3(1-v^2)P_m}{E}}$	设定为理想几何形状 d'=y/2 或 d'=α'l'/2
容器炉错	焊缝的 i边	P _m B ₁ B ₁ ≫B ₂ 错边ε ₁ 为两板厚度中心线 偏移量	$\frac{Q_{\rm b}}{P_{\rm m}} = \frac{6e_1}{B_1(1-\nu^2)} \frac{B_1^{\rm b}}{(B_1^{\rm b}+B_2^{\rm b})}$	b=1.5 用于环焊缝和球壳焊缝 b=0.6 用于纵焊缝

表 5-3 对接焊接接头中因错边及角变形引起的二次弯曲应力的计算公式

5.4.2.4.6 已知内外壁温差时,温差应力可按下式估算:

对铁素体钢 $Q_b = 1.6\Delta T$

对奥氏体钢 $Q_b = 1.8\Delta T$

5.5 材料性能数据的确定

5.5.1 所需的材料性能数据

5.5.1.1 力学和物理性能: 屈服点 $\sigma_s($ 或条件屈服强度 $\sigma_{0,2}$)、抗拉强度 σ_b 、弹性模量 E 等表征材料力学 性能和物理性能的参数。

5.5.1.2 断裂韧度:简化评定需要 CTOD 断裂韧度(δ_c 或 δ_i),常规评定需要 J 积分断裂韧度(J_{tc} 、 J_c),分析评定还要求获得包括 J_{tc} 的整条 $J_{R}(\Delta a)$ 阻力曲线。

5.5.2 确定材料性能数据的原则

5.5.2.1 评定中应优先采用实测数据。在无法获得实测数据时,经有关各方协商,在充分考虑材料化 学成分、冶金和工艺状态、试样和试验条件等影响因素且保证评定的总体结果偏于安全的前提下,可选 取代用数据。

5.5.2.2 实测数据所用的试样尽可能取自被评定缺陷部位的材料,也可取自在化学成分、力学性能、冶 金和工艺状态以及使用条件等方面能真实反映缺陷所在部位材料性能的试板。

5.5.2.3 断裂韧度实测试样中的裂纹面和裂纹扩展方向应同被评定结构中的情况一致,也可选取能获 得该材料最低断裂韧度数据的其他取样方法。对取自热影响区的试样,应考虑裂纹尖端所在部位组织 结构类型和晶粒尺寸等的影响。

5.5.3 材料性能数据的测定和选取方法见附录 B的规定。

5.6 平面缺陷的简化评定

本节规定了采用以起裂准则为基础的简化评定方法对平面缺陷进行安全评定的基本方法和步骤。

5.6.1 评定方法

平面缺陷的简化评定方法采用简化失效评定图进行评定。简化失效评定图如图 5-10 所示,由纵坐标 $\sqrt{\delta_r}$ 、横坐标 S,以及 $\sqrt{\delta_r}$ 等于 0.7 的水平线和 S,等于 0.8 的垂直线所围成的矩形为安全区,该区域之外为非安全区。按本节确定的评定点若位于失效评定图的安全区内,则为安全或可以接受;否则,应为不能保证安全或不可接受。

5.6.2 评定程序

平面缺陷的简化评定按下列步骤进行:

- a) 缺陷表征和等效裂纹尺寸的确定;
- b) 应力的确定;

- c) 材料性能数据的确定;
- d) $\delta Q_{\sqrt{\delta_r}}$ 的计算;
- e) S_r的计算;
- f) 安全性评价。

评定程序如图 5-11 所示。

图 5-11 平面缺陷简化评定程序示意图

5.6.3 简化评定所需的基本数据和参数的确定

5.6.3.1 缺陷表征和等效纹尺寸 ā 的确定

根据缺陷的实际位置、形状和尺寸,按 5.3.1 的规定进行缺陷规则化,获得表征裂纹计算尺寸 a、c, 然后按下列规定计算等效裂纹尺寸 ā:

- a) 对长为 2a 的穿透裂纹, $\bar{a} = a$;
- b) 对长为 2c、高为 2a 的埋藏裂纹, $\ddot{a} = \Omega a$

式中

$$\Omega = \frac{\left(1.01 - 0.37 \frac{a}{c}\right)^2}{\left\{1 - \left(\frac{2a/B}{1 - 2e/B}\right)^{1.6} \left[1 - 0.4 \frac{a}{c} - \left(\frac{e}{B}\right)^2\right]\right\}^{1.08}}$$
$$e = \frac{B}{2} - (a + p_1)$$

上式的适用范围为:a/B≪0.45,a/c≪1.0。

ā值也可从表 5-4 中求取。

c) 对长为
$$2c$$
、深为 a 的表面裂纹, $\bar{a} = \left(\frac{F_1}{\varphi}\right)^2 a$

式中

$$F_{1} = \begin{cases} 1.13 - 0.09 \frac{a}{c} + \left(-0.54 + \frac{0.89}{0.2 + a/c}\right) \left(\frac{a}{B}\right)^{2} + \left[0.5 - \frac{1}{0.65 + a/c} + 14\left(1 - \frac{a}{c}\right)^{24}\right] \left(\frac{a}{B}\right)^{4} & \underline{\exists} \frac{a}{c} > 0 \\ 1.12 - 0.23 \frac{a}{B} + 10.55 \left(\frac{a}{B}\right)^{2} - 21.71 \left(\frac{a}{B}\right)^{3} + 30.38 \left(\frac{a}{B}\right)^{4} & \underline{\exists} \frac{a}{c} = 0 \end{cases}$$

$$\varphi = \left[1 + 1.464 \left(\frac{a}{c}\right)^{1.65}\right]^{1/2}$$

上式的适用范围为: $a/B \leq 0.8, a/c \leq 1.0$ 。

ā值也可从表 5-5 中求取。

表 5-4 埋藏椭圆裂纹的等效裂纹尺寸 ā/B

a/ -	a/ 4											a/c										
(1 / n	a / 1.d	0, 00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0. 90	0.95	1.00
0.00	$\begin{array}{c} 0.05 \\ 0.50 \end{array}$	0, 000	0. 000	0.000	0.000	0.000	0, 000	0.000	0. 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0. 000	0.000	0.000	0. 000 (000
	0.05	0.069	0.066	0.063	0.060	0.057	0,054	0.052	0.049	0.047	0.045	0.042	0.040	0.038	0.036	0.034	0.032	0.030	0.029	0.027	0.025 (0.024
	0.10	0.059	0.056	0.054	0.052	0.050	0.048	0.046	0.044	0.042	0.040	0.038	0.036	0.034	0.033	0.031	0.029	0.028	0.026	0.025	0. 023 (0.022
	0.15	0.055	0.053	0.051	0.049	0.047	0.045	0.043	0.042	0.040	0.038	0.036	0. 035	0.033	0.031	0. 030	0.028	0.027	0.025	0.024	0.023 (0.021
	0.20	0.054	0.052	0.050	0.048	0.046	0.044	0.042	0.041	0.039	0.037	0.036	0.034	0.032	0.031	0.029	0.028	0.026	0.025	0.024	0.022 (0.021
0.05	0.25	0.053	0.051	0.049	0.047	0.046	0,044	0.042	0.040	0.038	0.037	0.035	0.034	0.032	0.031	0.029	0.028	0.026	0.025	0.024	0. 022 (0.021
	0.30	0.053	0,051	0.049	0.047	0.045	0,043	0.042	0.040	0.038	0.037	0.035	0.033	0.032	0.030	0.029	0.027	0.026	0.025	0.023	0. 022 (0.021
	0.35	0.052	0.050	0.049	0.047	0.045	0.043	0.041	0.040	0.038	0.036	0.035	0.033	0.032	0.030	0.029	0.027	0.026	0.025	0.023	0. 022 (0.021
	0.40	0.052	0.050	0.048	0.046	0.045	0.043	0.041	0.039	0.038	0.036	0.035	0.033	0.032	0.030	0.029	0.027	0. 026	0.025	0.023	0.022	0.021
	0.45	0.052	0.050	0.048	0.046	0.045	0,043	0.041	0.039	0.038	0.036	0.035	0.033	0.031	0.030	0.029	0.027	0. 026	0.024	0.023	0.022 (0.021
	* 0. 05	0.185	0.175	0.165	0.156	0.148	0.140	0.132	0.125	0.118	0.111	0.104	0.098	0.092	0.087	0.081	0.076	0.071	0.067	0.062	0.058 (0.054
	0.10	0.141	0, 135	0.129	0. 123	0.118	0.112	0.107	0.102	0.097	0.092	0.087	0.083	0.078	0.074	0.070	0.066	0.062	0. 059	0.055	0. 052 (0.049
	0.15	0.126	0.121	0.116	0. 111	0.106	0.102	0.097	0.093	0.088	0.084	0.080	0. 076	0.073	0.069	0.065	0.062	0.058	0.055	0.052	0.049 (0.046
	0.20	0.119	0.114	0.110	0.105	0.101	0.097	0.092	0.088	0.084	0, 080	0.077	0.073	0.070	0.066	0.063	0.060	0.056	0.053	0.050	0.047	0.045
0.10	0.25	0.115	0.110	0.106	0.102	0.097	0.093	0.089	0.086	0.082	0.078	0.075	0.071	0.068	0.064	0.061	0.058	0.055	0.052	0.049	0.047	0.045
	0. 30	0.112	0.108	0.103	0.099	0.095	0.091	0.088	0.084	0.080	0.077	0.073	0.070	0.067	0.063	0.060	0.057	0.054	0.051	0.049	0.046	0.043
	0.35	0.110	0.106	0.102	0.098	0.094	0, 090	0.086	0.083	0.079	0.076	0.072	0.069	0.066	0.063	0.059	0.056	0.054	0.051	0.048	0.045 0	0.043
	0.40	0.108	0.104	0.100	0, 097	0.093	0, 089	0.085	0.082	0.078	0.075	0.071	0.068	0.065	0.062	0.059	0.056	0.053	0.050	0.048	0.045	0.042
	• 0, 10	0.254	0.241	0. 229	0.218	0.206	0.196	0.186	0.176	0.166	0.157	0.149	0.140	0.132	0.125	0.117	0.110	0.104	0.097	0.091	0.085 (080.0
	0.15	0.217	0.207	0.198	0.189	0.180	0.172	0.163	0.155	0.148	0.140	0.133	0. 126	0.120	0.113	0.107	0.101	0.095	0.090	0.084	0. 079 (0.074
0 15	0.20	0.198	0.190	0.182	0.174	0.166	0.159	0.152	0.145	0.138	0.131	0.125	0.119	0.113	0.107	0.101	0.096	0.090	0.085	0.080	0. 076 0	0.071
	0. 25	0. 187	0. 179	0.172	0.165	0.158	0.151	0.144	0.138	0.132	0.125	0.119	0.114	0.108	0.103	0.097	0.092	0.087	0.082	0.078	0.073 (0.069
	0.30	0.180	0.173	0.166	0.159	0.152	0.146	0.139	0.133	0.127	0.122	0.116	0.110	0.105	0.100	0.095	0.090	0.085	0.080	0.076	0.072 (0.067
	0.35	0.174	0.168	0.161	0.155	0.148	0.142	0.136	0.130	0.124	0.119	0.113	0.108	0.103	0.098	0.093	0.088	0.083	0.079	0.075	0.070 (0.066
	• 0. 15	0.329	0.313	0.298	0.283	0.269	0.256	0.243	0.230	0.218	0.206	0.195	0. 185	0.174	0.164	0.155	0.146	0, 137	0. 129	0. 121	0.113	0.106
0.00	0.20	0.293	0. 280	0.267	0.255	0.243	0.232	0.220	0.210	0.199	0. 189	0.180	0.170	0.161	0.153	0.144	0.136	0. 128	0.121	0.114	0. 107 (0.100
	0.25	0.271	0.260	0.248	0.238	0.227	0.217	0.207	0.197	0.188	0.179	0.170	0. 161	0.153	0.145	0.137	0.130	0. 123	0.116	0.109	0.103 (0.096
	0.30	0. 257	0.246	0.236	0.226	0.216	0.207	0.197	0.188	0.180	0.171	0.163	0. 155	0.147	0.140	0.132	0.125	0, 119	0.112	0.106	0.099 (0.094
	• 0. 15	0.463	0.440	0.417	0.395	0.374	0.354	0.335	0.316	0.299	0.282	0.266	0.251	0.236	0.222	0.209	0.196	0.184	0.172	0.161	0.150 (), 140
0.25	0.20	0.404	0. 385	0.366	0.348	0, 331	0.315	0.299	0.284	0.269	0.255	0.241	0.228	0.216	0.204	0.192	0. 181	0.170	0.160	0.150	0.140 (0.132
	0.25	0.368	0.351	0.335	0.320	0.305	0.291	0.277	0.263	0.250	0.238	0.226	0.214	0.203	0.192	0.181	0.171	0.161	0. 152	0.143	0.134 (). 126
逬	₁*₩.:	弓所在行	的埋藏	椭圆裂线	玟,按规	定应规	则化为引	表面裂约	t 或穿透	裂纹计)	萆,此处)	所列数执	B仅供插	值时参	老。							

GB/T 19624-2004

5-5 表面半椭圆裂纹的等效尺寸 ā/B

喪

0.022 0.044 0.066 0.089 0.112 0.136 0.161 212 0.323 0.352 0.411 000 186238 266 294 382 8 0 3 0 0 0 0 0 119 0.348 0.413 198 446 000 070 095 145 256 286 317 023 047 171 227 381 95 **ं** o. o. ਂ ö 0 õ ò <u>.</u> o. o. o. ö o. °. o. 0.448 075 183 212 243 275 308 342 0.412 000 025 127 155 377 484 050 101 90 0 0 ं °. ਂ ċ °. o. 0 **.** o. ò. ਂ o. 0 o. 0.370 0.408 0.448 0.026 0.053 0.136 228 0.296 0.332 0.488 000 0.080 0.107 165 196527 261 85 0 0 0 0 ò °. 0 0.114 0.145 0.319 0.532 576 0.028 176 210 244 0.359 0.401 0.444 0.487 000 056 085 80 281 0 **.** o. 0. °. ò 0 ċ **.** 0.345 0.435 0.263 0.532 0.632 0.000 0.030 0.060 0.090 0.122 0.154 0.189 0.2250.303 0.389 0.483 0.582 22 ं 0.130 0.475 0.423 696 000 063 096 165 202 241 283 327 374 528583 640 031 20 ਂ ं <u>.</u> <u>.</u> 0 o. ं o. °. 0 ò ò ਂ **. .** 0.217 519579 642 0.705 0.769 000 0.033 0.102 0.139 0.177 0.260 305 0.354 0.406 067 0.461 65 0 *.* ੌ 0 0 0. ਂ 072 0.148 0.442 0.189 000 036 109233 330 569 708 0.781 854 280384 504 637 60 ö 0 **.** <u>.</u> <u>.</u> ं 0. 0 ं <u>.</u> <u>.</u> ò ് <u>.</u> 0.000 0.038 0.076 0.116 0.158 0.203 0.302 0.418 0.482 0.626 0.786 0.870 0.250 357 552 0.704 954 55 *.* 0 0. 0. 072 528 692 876 973 0.0400.217 388 455 0, 782 a/c000 169270 326 607 081 124 50 0 **.** <u>.</u> 0 Ē 0. <u>.</u> °. ð °. 0 °. 0 **.** <u>.</u> 1.213 1.0960.043 122 0.768 872 982 000 0.132 233 498 580 45 087 181 290 353 671 ð ं 0 0 0 **°** ਂ 0 ö 0 ਂ 0 °. 0.045 313 1.109 1.383 000 0.193 546640858 979 1.244 092 0.141 383 460 0.744 250 40 ਂ <u>.</u> <u>.</u> **。** ਂ ं 0 ਂ °. ö <u>.</u> 710 0.416 0.048 1.108 1.263 1.426 000 098 150 207 269 338 503 964 594 601 831 35 ਂ 0. 0 0 <u>.</u> <u>.</u> <u>.</u> 0 o. o. o. °. ---i 1.092 1.265 1.453 1.652 000 160 289 453 552 0.791 1.861 104 366 664 934 051 221 30 0 ö o. 0. <u>.</u> 0. 0. o. o. ö o. о. 000 054 110 170 236 311 396 495 609 740890 090 1.251 1.464 1.697 948 214 25 0 <u>.</u> Ē Ļ, °. o, ò ö °. °. <u>.</u> 0. o. o. ŝ 0.116 1.013 1.462 000 0.056 0.180 832 1.733 252 335 544677 223 036 370 731 431 20 <u></u> 0 0 ਂ <u>.</u> ,...; ~i N N ö o. 1.185 1.458 000 0.190 763 955 1.781 158 663 059 269 594 095 121 471 604ഫ 361 0 ੰ <u>.</u> ð ് ö °. **ं** °. 0 ŝ ы. ŝ ÷. 1.475 4.818 393 523 149 833 030 000 288 686 891 397 2 061 127 201 884 037 ਂ õ 0 ਂ ō ਂ ं ਂ ം °. г. 2. ÷ ÷. 6. 853 988 0.132 0.212 0.435 1.130 4.083 7.839 000 310 552 137 064 825 950 657 601 05 <u>1</u>0. ं 14. <u>.</u> 0 2. e.i ਂ ं °. 5. 535 356 032 001 000 0.064 140 240636 734 376 563 771 183 00 827 207 666 15. ö 40. 65. o. 25. °. 0. 0 0 Γ. ŝ ÷ ġ. <u>б</u> **o** 0.15 0.75 a/B8 05 10 20 25 30 35 40 45 50 55 60 65 70 80 0 0 0. ò ं ं ं 0 <u>.</u> 0 °. 0 0 ö °.

5.6.3.2 总当量应力 σ_Σ 的确定

简化评定计算所需总当量应力 σ₂ 可按公式(5-1)估算,并保守地假设总当量应力均匀分布在主应 力平面上。

$$\sigma_{\Sigma} = \sigma_{\Sigma 1} + \sigma_{\Sigma 2} + \sigma_{\Sigma 3} \qquad (5-1)$$

式中: $\sigma_{\Sigma_1} = K_{\rm r} P_{\rm m}$, $\sigma_{\Sigma_2} = X_{\rm b} P_{\rm b}$, $\sigma_{\Sigma_3} = X_{\rm r} Q$

此处,K,为由焊缝形状引起的应力集中系数,X_b为弯曲应力折合系数,X,为焊接残余应力折合系数,Q,为被评定缺陷部位热应力最大值与焊接残余应力最大值。^{mex}之代数和。

表 5-6 给出了几种常见焊接接头结构 K, 取值,表 5-7 给出了 X, 和 X, 的取值。

表	5-	6	堂	见	煋	接	接	<u>त्रे</u>	结	构	晑	部	应	カ	僿	中	系	勬	K	,
	~	~		~~		134		~	214		/~u	HP	<u></u>	15	215	- 1 -	- 4 - 5		43.	ĉ

焊缝种类		含缺陷结构示意图	К,
对接	焊趾 处裂 纹	力。一方、一方、一方、一方、一方、一方、一方、一方、一方、一方、一方、一方、一方、一	$\eta/B \leq 0.15$ 时,K ₁ =1.5 $\eta/B > 0.2$ 时,K ₁ =1.0 η/B 介于 0.15~0.2之间时,K ₁ 可按线性内 插求得 无焊缝增高时,取 K ₁ =1.0
冲接 接 头 结 构	有角 变形 及错 边量	1m 表面裂纹 埋藏裂纹 。	K ₁ =Γ $\left[1+\frac{3(w+e_1)}{\beta B}\right]$ 対 η/B≤0.5 的表面裂纹取 β=1 対 η/B>0.5 的表面裂纹和埋藏裂纹取 β=2 Γ:η/B≤0.15 时,Γ=1.5 η/B>0.2 时,Γ=1.0 η/B介于 0.15~0.2 之间时,Γ可按线性内 插求得
接 管 处 内	球売及球形 封头接管	θ:接管轴与器壁法线间夹角 裂纹 裂纹 <	$K_{1} = 2.0(1 + 2\sin^{2}\theta)$
拐角	圆柱壳接管	外拐角 注:用于结构尺寸满足分析 设计规范的规定时	$K_{i} = 3.1(1+2\sin^{2}\theta)$ 用于 θ 角平面与容器横截面平行时 $K_{i} = 3.1[1+(\tan\theta)^{4/3}]$ 用于 θ 角平面与容器纵截面平行时

表 5-7 X。 值和 X. 值的选取

裂纹种类		v	X,		
		Ab	裂纹平行熔合线	裂纹垂直熔合线	填角焊缝裂纹
埋藏裂纹		0.25	0.2	0.6	0.6
穿透裂纹		0.5	0.2	0.6	0.6
表面裂纹	弯曲的拉伸侧	0,75	0.4~0.6	0.6	0.6
	弯曲的压缩侧	0			

5.6.3.3 材料性能数据的确定

按 5.5 及附录 B 确定材料的屈服点 σ_s 、抗拉强度 σ_b 及断裂韧度 δ_c 值。 δ_c 按实际情况可取 δ_i 的值 或 δ_a 的值(也可保守地取 $\delta_{0.05}$ 的值),并应将所得的材料断裂韧度 δ_c 除以 1.2 后的值用于 5.6.4 和

GB/T 19624-2004

5.6.7计算中所需的 & 值。

5.6.4 δ及√δ,的计算

 $\sqrt{\delta_r} = \begin{cases} \sqrt{\delta/\delta_c} &$ 单裂纹或复合后的单裂纹或不需要考虑干涉效应的裂纹群 1.2 $\sqrt{\delta/\delta_c} &$ 需要考虑干涉效应的裂纹群 (5-3)

5.6.5 S, 的计算

$$S_{\rm r} = \frac{L_{\rm r}}{L_{\rm r}^{\rm max}} \tag{5-4}$$

式中, L_r 由 P_m 及 P_b 的值按附录 C 的规定计算 L_r ,其中,载荷应力不需要考虑安全系数; L_r^{max} 的值 取 1.20 及 $\frac{\sigma_r + \sigma_b}{2\sigma_r}$ 两者中的较小值。

5.6.6 安全性的评价

将计算得到的评定点(S_r , $\sqrt{\delta_r}$)绘在图 5-10 中,如果评定点落在安全区内,则评定结论为安全或可以接受;否则,应为不能保证安全或不可接受。

5.6.7 最大容许等效裂纹尺寸的确定

简化评定的结论也可以采用给出最大容许等效裂纹尺寸ā_m的评定方法。最大容许等效裂纹尺寸 ā_m按下式计算:

$$\bar{a}_{m} = \begin{cases} \frac{E\delta_{c}}{2\pi\sigma_{s}(\sigma_{\Sigma}/\sigma_{s})^{2}M_{g}^{2}} & \stackrel{\text{th}}{=} \sigma_{\Sigma} < \sigma_{s} \text{ bi} \\ \frac{E\delta_{c}}{\pi\sigma_{s}(\sigma_{\Sigma}/\sigma_{s}+1)M_{g}^{2}} & \stackrel{\text{th}}{=} \sigma_{\Sigma} \ge \sigma_{s} \ge (\sigma_{\Sigma1} + \sigma_{\Sigma2}) \text{ bi}^{1} \end{cases}$$
(5-5)

当 $\bar{a} \leq \bar{a}_m$ 且 $S_r \leq 0.8$ 时,该缺陷是容许的。

5.7 平面缺陷的常规评定

本节规定了采用常规评定方法对平面缺陷进行安全评定的方法和步骤。

5.7.1 评定方法

平面缺陷的常规评定采用通用失效评定图的方法进行。该失效评定图如图 5-12 所示。

图 5-12 通用失效评定图

1) 当 $\sigma_s < (\sigma_{21} + \sigma_{22}) \le 2\sigma_s$ 时,如果可以获得裂纹尖端的总应变 ϵ_2 ,则可用 ϵ_2 / ϵ_s 代替 σ_2 / σ_s 代入公式(5-2)或(5-5) 的第 2 式中计算 δ 或 \bar{a}_m 。在计算或估算 ϵ_2 时,仍假设结构中不存在裂纹。

图 5-12 中失效评定曲线(FAC)的方程为:

$$K_{\rm r} = (1 - 0.14 L_{\rm r}^2) (0.3 + 0.7 e^{-0.65 L_{\rm r}^2})$$

垂直线的方程为:

$$L_{\rm r} = L_{\rm r}^{\rm max}$$

L^{max} 的值取决于材料特性:

对奥氏体不锈钢, $L_r^{max} = 1.8;$

对无屈服平台的低碳钢及奥氏体不锈钢焊缝, $L_r^{max} = 1.25$;

对无屈服平台的低合金钢及其焊缝, $L_r^{max} = 1.15$;

对于具有长屈服平台的材料,一般情况下, $L_t^{max} = 1.0$;当材料温度不高于 200℃时, L_t^{max} 可根据 K, 值及材料屈服强度级别,由表 5-8 确定;

对于不能按钢材类别确定 L_r^{max} 的材料,可按公式(5-6)计算 L_r^{max} 的值。

$$G_{\rm r}^{\rm max} = \bar{\sigma}/\sigma_{\rm s} = 0.5(\sigma_{\rm b}+\sigma_{\rm s})/\sigma_{\rm s}$$

(5-6)

 $\frac{0.13 \leqslant K_{\rm r} < 0.15}{0.15 \leqslant K_{\rm r} < 0.26}$

 $K_r \ge 0.26$

材料 K, L ^{max}	235 MPa≪σ,<350 MPa	$\sigma_{\rm s}$ >350 MPa
1.25	$K_{\rm r} \leq 0.10$	$K_r \leq 0.13$

 $0.10 \leq K_r < 0.12$

0.12 $\leq K_r < 0.20$

 $K_r \ge 0.20$

表 5-8 温度不高于 200℃的长屈服平台材料的 L_r^{max} 值

图 5-12 中,由 FAC 曲线、 $L_r = L_r^{mx}$ 直线和两直角坐标轴所围成的区域之内为安全区,该区域之外为非安全区。

在评定点的计算时,相关的输入参量应根据表 5-1 的规定取相应的分安全系数。

5.7.2 评定程序

平面缺陷的常规评定按下列步骤进行:

- a) 缺陷的表征;
- b) 应力的确定;
- c) 材料性能数据的确定;

1.20

1.15

1.00

- d) 应力强度因子 K_1^P 和 K_1^s 的计算;
- e) K, 的计算;
- f) L_r的计算;
- g) 安全性评价。

评定程序如图 5-13 所示。

5.7.3 平面缺陷常规评定所需基本数据的确定

5.7.3.1 缺陷的表征

对经检测查明的缺陷,根据实际位置、形状和尺寸按 5.3.1 的规定进行缺陷的规则化,并得到相应 的表征裂纹尺寸 a、c。该表征裂纹尺寸应乘以表 5-1 规定的表征裂纹分安全系数后作为计算用的表征 裂纹尺寸 a、c 值。

5.7.3.2 应力的确定

常规评定中所需的一次应力和二次应力的应力分量 P_m、P_b、Q_m、Q_b 按以下规定确定:

5.7.3.2.1 按 5.4 的规定,分别确定各种载荷下一次应力、二次应力及各应力分量;

5.7.3.2.2 分别计算各类应力分量的代数和,并乘以表 5-1 所规定的应力分安全系数,由此所得到的 各应力值即为用于评定计算的应力 P_m、P_b、Q_m、Q_b。

图 5-13 平面缺陷常规评定程序示意图

5.7.3.3 材料性能数据的确定

5.7.3.3.1 按 5.5 和附录 B 的规定,确定评定工况下材料的屈服点 σ_{s} 和抗拉强度 σ_{b} 及 J 积分断裂韧度 J_{1c} 。 J_{1c} 值按实际情况可取 J_{1} 值或 J_{1s} 值,也可保守地取 $J_{0.05}$ 的值。

5.7.3.3.2 计算 $K_{\rm f}$ 所需的材料断裂韧度 $K_{\rm c}$ 可以由测得的 J 积分断裂韧度 $J_{\rm IC}$ 按公式(5-7)求得:

$$K_{\rm c} = \sqrt{E J_{\rm IC} / (1 - \nu^2)}$$
 (5-7)

5.7.3.3.3 在不能直接得到 J_{1c} 值时,可直接测量材料的平面应变断裂韧度 K_{1c} ,此时计算 K_{r} 所需的 K_{c} 值可用 K_{1c} 值代替;也可采用 CTOD 断裂韧度 δ_{c} 值,按公式(5-8)估算 K_{c} 的下限值:

$$K_{\rm C} = \sqrt{1.5\sigma_{\rm s}\delta_{\rm C}E/(1-\nu^2)}$$
 (5-8)

5.7.4 K^P₁和K^s₁的计算

一次应力 P_m 、 P_b 和二次应力 Q_m 、 Q_b 作用下的应力强度因子 K_1^r 、 K_1^s 按附录 D 的规定计算。计算 中所需的表征裂纹尺寸和应力,分别按 5.7.3.1 和 5.7.3.2 的规则确定。

5.7.5 K, 的计算

断裂比 K, 值按公式(5-9)计算:

$$K_{\rm r} = G(K_{\rm I}^{\rm P} + K_{\rm I}^{\rm S})/K_{\rm P} + \rho \tag{5-9}$$

式中:

G---相邻两裂纹间弹塑性干涉效应系数,按附录 A 的规定确定;

 K_{p} ——评定用材料断裂韧度,即按 5.7.3.3 求得的 K_{c} 值除以表 5-1 规定的分安全系数;

ρ----塑性修正因子,按公式(5-10)求得:

$$\rho = \begin{cases} \Psi_1 & \exists L_r < 0.8 \text{ ft} \\ \Psi_1 (11 - 10L_r)/3 & \exists 0.8 < L_r < 1.1 \\ 0 & \exists L_r > 1.1 \text{ ft} \end{cases}$$
(5-10)

式中, Ψ_1 的值可以由图 5-14 根据 $K_1^{\rm S}/(\sigma_s\sqrt{\pi a})$ 的值查得。 L_r 按 5.7.6 和附录 C 的规定计算求得。

图 5-14 Ψ, 取值

5.7.6 L, 的计算

载荷比L,按附录C的规定计算。计算中所需的一次应力和表征裂纹尺寸,分别按5.7.3.2和 5.7.3.1的规则确定。

5.7.7 安全性评价

将按 5.7.5 及 5.7.6 计算得的 K, 值和 L, 值所构成的评定点(L, ,K,)绘在常规评定通用失效评定 图 5-12 中。如果该评定点位于安全区之内,则认为该缺陷经评定是安全的或可以接受的;否则,认为不 能保证安全或不可接受。如果 L_r < L_r^{max} 而评定点位于失效评定曲线上方,则容许采用附录 F 的分析评 定方法重新评定。

5.8 凹坑缺陷的安全评定

5.8.1 评定方法与限定条件

5.8.1.1 本节规定了内压容器壳体表面凹坑缺陷安全评定的基本方法和步骤。在应用本方法评定之前,应将被评定缺陷打磨成表面光滑、过渡平缓的凹坑,并确认凹坑及其周围无其他表面缺陷或埋藏 缺陷。

5.8.1.2 本节之规定适用于符合下述条件的压力容器:

—— $B_0/R < 0.18$ 的筒壳或 $B_0/R < 0.10$ 的球壳;

一一材料韧性满足压力容器设计规定,未发现劣化;

——凹坑深度 Z 小于计算厚度 B 的 60%, 且坑底最小厚度(B-Z)不小于 2 mm;

——凹坑长度 $2X \leq 2.8 \sqrt{RB}$;

一一凹坑宽度 2Y 不小于凹坑深度 Z 的 6 倍(容许打磨至满足本要求)。

5.8.1.3 对于超出 5.8.1.2 规定的限定条件或在服役期间表面有可能生成裂纹的凹坑缺陷,应按平面缺陷进行评定。

5.8.2 评定程序

凹坑缺陷的安全评定按下列步骤进行:

- a) 缺陷的表征;
- b) 缺陷部位容器尺寸的确定;
- c) 材料性能数据的确定;
- d) 无量纲参数 G₀ 的计算和免于评定的判别;
- e) 塑性极限载荷和最高容许工作压力的确定;
- f) 安全性评价。

评定程序如图 5-15 所示。

图 5-15 凹坑缺陷的评定程序示意图

5.8.3 缺陷的表征与缺陷部位容器尺寸的确定

对经检测查明的凹坑缺陷,根据其实际位置、形状和尺寸,按 5.3.2 的规定将其规则化,并确定凹坑 所在部位容器的计算厚度 B 和平均半径 R。

5.8.4 材料性能数据的确定

按 5.5 和附录 B 的规定,确定在评定工况下材料的屈服点 σ_s。评定中所需的材料流动应力 σ'按下 述规定选取:

$\bar{\sigma}' = \sigma_{\rm s}$	用于非焊缝区凹坑
$\bar{\sigma}' = \phi \sigma_s$	用于焊缝区凹坑

其中焊接接头系数 按容器的实际设计要求选取;当无法得到容器的设计要求时,也可按 GB 150--1998 或其他相关标准确定。

5.8.5 G₀的计算和免于评定的判别

容器表面凹坑缺陷的无量纲参数 G。按公式(5-11)计算:

$$G_0 = \frac{Z}{B} \frac{X}{\sqrt{RB}} \tag{5-11}$$

若 G_0 ≪0.1,则该凹坑缺陷可免于评定,认为是安全的或可以接受的;否则应继续按 5.8.6 和 5.8.7 的规定进行评定。

- 5.8.6 塑性极限载荷和最高容许工作压力的确定
- 5.8.6.1 无凹坑缺陷壳体塑性极限载荷 PLB 的计算

对球形容器:

对圆筒形容器:

对球形容器:

$$p_{\rm L0} = 2\bar{\sigma}' \ln\left(\frac{R+B/2}{R-B/2}\right)$$
 (5-12)

$$p_{\rm L0} = \frac{2}{\sqrt{3}} \bar{\sigma}' \ln\left(\frac{R + B/2}{R - B/2}\right) \tag{5-13}$$

5.8.6.2 带凹坑缺陷容器极限载荷 p_L 的计算

$$p_{\rm L} = (1 - 0.6G_0) p_{\rm L0} \tag{5-14}$$

$$p_{\rm L} = (1 - 0.3 \sqrt{G_0}) p_{\rm L0} \tag{5-15}$$

5.8.6.3 带凹坑缺陷容器最高容许工作压力 pmax 按公式(5-16)确定:

$$p_{\rm max} = \frac{p_{\rm L}}{1.8} \tag{5-16}$$

5.8.7 安全性的评价

若 $p \leq p_{max}$ 且实测凹坑尺寸满足 5.8.1 的要求,则认为该凹坑缺陷是安全的或可以接受的;否则,是 不能保证安全或不可接受的。

5.9 气孔和夹渣缺陷的安全评定

5.9.1 评定方法与限定条件

5.9.1.1 本节规定了内压容器壳体中气孔、夹渣缺陷安全评定的基本方法和步骤。

5.9.1.2 本节之规定适用于符合下述条件的压力容器:

- a) B₀/R<0.18的压力容器;
- b) 材料性能满足压力容器设计制造规定,且对铁素体钢,σ,<450 MPa,并且在最低使用温度下 V形夏比冲击试验中3个试样的平均冲击功不小于40J、最小冲击功不小于28J;对其他材 料,该气孔、夹箔所在处的K_ic大于1250 N/mm^{3/2};
- c) 未发现材料劣化;
- d) 气孔、夹渣未暴露于器壁表面;
- e) 气孔、夹渣无明显扩展情况或可能;
- f) 缺陷附近无其他平面缺陷。

5.9.1.3 对于暴露于器壁表面的气孔、夹渣,可打磨消除。打磨成凹坑时,应按 5.8 的规定进行安全评 定。对于超出 5.9.1.2 中其他限定条件或在服役期间有可能生成裂纹的气孔、夹渣,应按平面缺陷进行 评定。

5.9.2 安全性评价

5.9.2.1 气孔的安全性评价

如果同时满足 5.9.1.2 和下列条件,则该气孔是容许的;否则,是不可接受的:

- a) 气孔率不超过6%;
- b) 单个气孔的长径小于 0.5B,并且小于 9 mm。

5.9.2.2 夹渣的安全性评价

如果夹渣的尺寸满足 5.9.1.2 和表 5-9 的规定,则该夹渣是容许的;否则,是不可接受的。

表 5-9	夹渣	的容	许	尺	す
-------	----	----	---	---	---

夹渣位置	夹渣尺寸的容许值		
球壳对接焊缝、圆筒体纵焊缝、与封头连接	总长度≪6B	自身高度或宽度≪0.25 B,并且≪5 mm	
的环焊缝	总长度不限	自身高度或宽度≪3 mm	
间体体工程体	总长度≪6 B	自身高度或宽度≪0.30 B,并且≪6 mm	
四间许尔汗缓	总长度不限	自身高度或宽度≪3 mm	

5.9.2.3 按 5.9.2.1 或 5.9.2.2 的规定评定为不可接受的气孔或夹渣,可表征为平面缺陷并按 5.6 或 5.7 的规定重新进行安全评定,作出相应的安全性评价。

6 疲劳失效评定

本章给出了压力容器中平面缺陷和体积缺陷的疲劳失效评定方法。

6.1 平面缺陷的疲劳评定

GB/T 19624-2004

6.1.1 评定方法

平面缺陷的疲劳评定,首先依据疲劳裂纹扩展速率 da/dN 与裂纹尖端应力强度因子变化幅度 ΔK 的关系式 $\frac{da}{dN} = A(\Delta K)^m$,确定在规定的循环周期内疲劳裂纹的扩展量和最终尺寸;然后根据所给出的判别条件和方法,来判断该平面缺陷是否会发生泄漏和疲劳断裂。除 1.1.2 所规定的平面缺陷外,难以明确划分为非平面缺陷的埋藏缺陷也应按平面缺陷进行评定。

6.1.2 评定程序

平面缺陷疲劳评定按下列步骤进行:

- a) 缺陷的表征;
- b) 应力变化范围的确定;
- e) 材料性能数据的确定;
- d) 疲劳裂纹的 ΔK 计算;
- e) 免于疲劳评定的判别;
- f) 疲劳裂纹扩展量的计算;
- g) 容许裂纹尺寸的计算和安全性评价。

评定程序如图 6-1 所示。

图 6-1 平面缺陷的疲劳评定程序示意图

6.1.3 疲劳评定所需基本数据的确定

6.1.3.1 缺陷的表征

按 5.3.1 的规定对缺陷规则化,确定疲劳评定初始裂纹的尺寸。

6.1.3.2 应力变化范围及循环次数的确定

根据外加载荷或温度的变化历程,分别确定被评定缺陷所在截面上垂直于裂纹平面的一次应力和 二次应力的应力变化范围的分布曲线及其循环次数。平行于裂纹平面的应力变化不予考虑。

6.1.3.2.1 根据应力变化范围线性化规则,分别计算出评定所需的薄膜应力变化范围 Δσ_m和弯曲应 力变化范围 Δσ_B。

应力变化范围的线性化规则:定义一条线性的、在缺陷处壁厚范围内各点应力变化范围值均不低于 实际分布曲线上的应力变化范围值的应力变化范围分布直线(图 6-2),并按该线性化的应力变化范围 分布直线确定疲劳评定中所需的薄膜应力变化范围值 Δσ_m 及弯曲应力变化范围值 Δσ_b:

$$\begin{cases} \Delta \sigma_{\rm m} = \frac{\Delta \sigma_1 + \Delta \sigma_2}{2} \\ \Delta \sigma_{\rm B} = \frac{\Delta \sigma_1 - \Delta \sigma_2}{2} \end{cases}$$
(6-1)

式中,Δσ1和 Δσ2 分别为线性化后,内、外壁处的应力变化范围值。

6.1.3.2.2 以一次应力的应力变化范围分布曲线所获得的 $\Delta \sigma_m$ 及 $\Delta \sigma_B$ 为 ΔP_m 及 ΔP_b ,以二次应力的 应力变化范围分布曲线所获得的 $\Delta \sigma_m$ 及 $\Delta \sigma_B$ 为 ΔQ_m 及 ΔQ_b 。

6.1.3.2.3 若在预期寿命内存在 d 种不同的应力变化范围,则应按评定周期内的载荷作用历程,计算出 i=1,2,……,d 种不同应力变化范围作用时的(Δσ_m),和(Δσ_b),同时确定其在评定期间内相应的预期循环次数 n_i。

6.1.3.2.4 在载荷变化范围计算中应包括由于操作压力、操作温度和其他外载荷的波动所产生的应力 变化范围,并考虑它们的组合效果。焊接残余应力不予考虑。

6.1.3.2.5 容器受双向应力疲劳作用时,其疲劳评定按单向应力疲劳评定方法进行。

图 6-2 疲劳评定中应力变化范围分布的线性化规则图例

6.1.3.3 材料性能数据的确定

6.1.3.3.1 疲劳裂纹扩展速率与 △K 的关系式中的系数 A 与指数 m 的取值

尽可能从服役容器上取样,按 GB 6398—1986 的规定进行实验。应根据实验数据,用最小二乘法 回归得到 A 和 *m*,但用最小二乘法回归得到的 A 值应乘以一个不小于 4.0 的系数后才能作为评定所取 用的 A 值。

对 16 MnR 钢在 100℃以下的空气环境中,并且 △K 在 300~1 500 N/mm^{3/2}范围内时,也可取:

$$m = 3.35$$
 $A = 6.44 \times 10^{-14}$

对 σ_{0.2} <600 MPa 的铁素体钢,在不超过 100℃的空气环境中,也可取:

$$m = 3.0$$
 $A = 3 \times 10^{-13}$

对伴有解理或微孔聚合等具有更高扩展速率的疲劳裂纹扩展机制时,应取:

$$m = 3.0$$
 $A = 6 \times 10^{-13}$

6.1.3.3.2 疲劳裂纹扩展的应力强度因子变化范围门槛值 △K_{tb}的取值

当幸存概率为 97.5% 时,碳钢和碳锰钢在空气中的疲劳裂纹扩展应力强度因子变化范围门槛值 ΔK_t可以用以下方法估算:

7+ T. 17. ++	$\Delta K_{\rm th} = 170 - 214 R_{\sigma}$	当 0≪R。≪0.5 时	(6.2)
对丁母构:	$\Delta K_{\rm th} = 63$	当 R。>0.5 时	(0-2)
计工作体体	$\int \Delta K_{\rm th} = 214 \Delta \sigma / \sigma_{\rm s} - 44$	4 当 Δσ≫σ _s /2 时	(6-3)
刈了奸佞佞大:	$\Delta K_{\rm tb} = 63$	当 Δσ≪σ₅/2 时	(0-3)

6.1.4 应力强度因子变化范围 ΔK 的计算

根据 6.1.3.1 得到的表征裂纹尺寸 a_0 和 c_0 和 6.1.3.2 计算的应力变化范围 $\Delta \sigma_m$ 和 $\Delta \sigma_B$,按附录 D 中 D.1.4 的规定计算出各自的应力强度因子变化范围 ΔK_a 和 ΔK_c 。

6.1.5 免于疲劳评定的判别

按 6.1.4 计算出不同载荷循环的 ΔK_a 和 ΔK_c 和所对应的预期循环次数,如果其结果均小于表6-1 中相应各列 ΔK 值所对应的容许承受循环次数,则该缺陷可免于疲劳评定,认为是安全的或可接受的。

	穷许承受任任本教		
表面裂纹	埋藏裂纹	谷计承文值坏伏奴	
690~551	460~368	1×10 ³	
550~407	367~271	2×10 ³	
406~321	270~214	5×10^{3}	
320~255	213~170	1×104	
254~188	169~125	2×104	
187~149	124~101	5×104	
$148 \sim \Delta K_{\rm th}$	$100 \sim \Delta K_{\rm th}$	1×105	
$< \Delta K_{ m th}$	$<\Delta K_{\rm th}$	不限	

表 6-1 免于疲劳评定界限

6.1.6 疲劳裂纹扩展量和裂纹最终尺寸 ar 和 cr 的计算

本节给出了疲劳裂纹扩展量和 af、cf 的循环计算和分段简化计算的方法与步骤。

6.1.6.1 按应力变化范围历程逐个循环计算方法与步骤

6.1.6.1.1 按 a_0 、 c_0 和第1个循环的($\Delta \sigma_m$)₁、($\Delta \sigma_B$)₁分别计算(ΔK_s)₀和(ΔK_c)₀,并计算第1个循环后 的裂纹尺寸:

$$\begin{cases} a_1 = a_0 + A(\Delta K_*)_0^{m} \\ c_1 = c_0 + A(0, 9\Delta K_c) \end{cases}$$

6.1.6.1.2 按 a_1, c_1 和第 2 个循环的($\Delta \sigma_m$)₂、($\Delta \sigma_B$)₂ 分别计算(ΔK_a)₁ 和(ΔK_c)₁,并计算第 2 个循环 后的裂纹尺寸:

$$\begin{cases} a_2 = a_1 + A(\Delta K_*)_1^m \\ c_2 = c_1 + A(0.9\Delta K_c) \end{cases}$$

6.1.6.1.3 重复以上步骤,按应力变化范围的历程,用公式(6-4)逐次计算经历第 i 个应力变化循环后 的裂纹尺寸。

$$\begin{cases} a_{i} = a_{i-1} + A(\Delta K_{s})_{i-1}^{m} \\ c_{i} = c_{i-1} + A(0, 9\Delta K_{c})_{i-1}^{m} \end{cases}$$
(6-4)

6.1.6.1.4 重复以上步骤,直到评定期间预期的最后一个应力变化循环为止,即得到疲劳扩展的最终 裂纹尺寸 *a*_f 和 *c*_f。

6.1.6.2 分段简化计算的方法与步骤

6.1.6.2.1 如果有 d 种应力变化范围,各种应力变化的循环次数分别为 n_i(i=1,2,……,d),并且各种

应力变化范围大体上均匀分布在疲劳评定周期内,则可将每一种应力变化范围的循环数 n_i (i=1,2, ……,d)均分为 u 段(j=1,2, ……,u)。第 i 种应力变化范围的循环数 n_i 均分为 u 段后,每段的循环次数为 n_i/u 。对于恒幅循环,每段的循环次数为 N/u,一般取 u=5。

6.1.6.2.2 从 *j*=1 起至 *j*=*u*止,应用公式(6-5)及公式(6-6)可偏安全地逐段计算出在各种应力变化 范围作用下该计算段裂纹尺寸的近似平均值 *a_i* 及 *c_j*,直至计算出疲劳扩展的最终尺寸 *a_i* 和 *c_i*。

$$\begin{cases} a_{j} = a_{j-1} + A \sum_{i=1}^{a} n_{i} [(\Delta K_{a})_{i}]_{j-1}^{m} / u \quad j = 1, 2, \dots, u \\ a_{f} = a_{u} + 0.5A \sum_{i=1}^{d} n_{i} [(\Delta K_{a})_{i}]_{u}^{m} / u \\ \begin{cases} c_{j} = c_{j-1} + A \sum_{i=1}^{d} n_{i} [0.9(\Delta K_{c})_{i}]_{j-1}^{m} / u \quad j = 1, 2, \dots, u \\ c_{f} = c_{u} + 0.5A \sum_{i=1}^{d} n_{i} [0.9(\Delta K_{c})_{i}]_{u}^{m} / u \end{cases}$$

$$(6-5)$$

式中[(ΔK_a)_{*i*}]_{*j*-1}和[(ΔK_c)_{*i*}]_{*j*-1}分别为裂纹尺寸 $a = a_{j-1}, c = c_{j-1}$ 时第 *i* 种($\Delta \sigma_m$), 和($\Delta \sigma_B$), 作用下 在 *a* 和 *c* 方向裂纹尖端的 ΔK 值。

如为恒幅循环,即d = 1,则公式(6-5)和公式(6-6)中的 $\sum_{i=1}^{d} n_i$ 简化为 $N_i (\Delta K_a)_i$ 简化为(ΔK_a),

 $(\Delta K_c)_i$ 简化为 $(\Delta K_c)_c$

- 6.1.6.3 可忽略 c 方向扩展时的简化计算方法
- 6.1.6.3.1 忽略 c 方向扩展的条件

若满足公式(6-7)的条件,可以忽略 c 方向的扩展。

$$\Delta K_{\rm c}/\Delta K_{\rm a} < 0.5 \tag{6-7}$$

6.1.6.3.2 忽略 c 方向扩展时 a_r 的计算

采用 6.1.6.1 或 6.1.6.2 的计算方法,但不计算有关 c 方向的所有参数。

- 6.1.7 安全性评价
- 6.1.7.1 疲劳泄漏评定

对表面裂纹:若 a₁<0.7 B,则不会发生泄漏。

对埋藏裂纹:若 $\left(\frac{p_1+a_0-a_f}{a_f}\right) \ge 0.8 \pm \left(\frac{p_1+a_0+a_f}{B}\right) \le 0.7$,则不会发生泄漏。

6.1.7.2 疲劳断裂评定

按第5章断裂及塑性破坏评定中平面缺陷简化评定或常规评定的方法,根据最终裂纹尺寸 a_f 及 c_f 和缺陷所在部位承受的最大载荷应力值进行断裂和塑性破坏评定,如果评定的结果是安全或可以接受的,则不会发生因疲劳断裂和塑性破坏导致的失效。

6.1.7.3 疲劳安全性评价

若疲劳评定结果能同时满足 6.1.7.1 和 6.1.7.2 的条件,则认为该缺陷是安全的或可以接受的;否则,是不能保证安全或不可接受的。

6.2 体积型焊接缺陷的疲劳评定

6.2.1 本节规定的基于 S-N 曲线的评定方法适用于同时满足下述条件的含体积型缺陷的在用压力 容器焊接接头的疲劳评定。

6.2.1.1 容器壁厚等于或大于 10 mm。

6.2.1.2 操作温度低于 375℃的碳钢、碳-锰钢和低合金钢制容器或操作温度低于 430℃的奥氏体不锈 钢制容器。

6.2.2 评定程序
体积型焊接缺陷的疲劳评定按下列步骤进行:

- a) 缺陷表征;
- b) 应力变化范围的确定;
- c) 免于疲劳评定的判别;
- d) 使用工况所要求承受的疲劳强度参量(S³N)_{*}值的确定;
- e) 容许承受的疲劳强度参量(S³N), 值的确定;
- f) 疲劳安全性评价。

评定程序如图 6-3 所示。

图 6-3 体积缺陷的疲劳评定程序示意图

6.2.3 疲劳评定所需基本数据的确定

6.2.3.1 缺陷的表征

按 5.3.2.3 的规定对缺陷进行表征。

6.2.3.2 应力变化范围及循环次数的确定

按 6.1.3.2 的规定确定应力的变化范围。体积缺陷承受的循环次数 N 及 n; 应为从该容器投入运 行时起计算。

6.2.4 免于疲劳评定的判别

符合以下条件之一者,可免于进行疲劳评定,并认为该缺陷是可以接受的:

- a) 缺陷所在截面的工作应力变化范围低于 23 MPa;
- b) 仅承受与焊缝方向一致的疲劳载荷的咬边缺陷。

6.2.5 (S³N)_{*}值的计算

6.2.5.1 对于恒幅疲劳,可根据缺陷所在截面的应力变化范围 Δσ 和在整个寿命期内的总循环次数 N,按公式(6-8)计算(S³N),:

$$(S^3 N)_{\star} = (\Delta \sigma)^3 N \qquad (6-8)$$

6.2.5.2 对于非恒幅疲劳,如有 d 种应力变化范围 $\Delta \sigma_i$ ($i=1,2,\dots,d$),它们所承受的循环次数分别 为 n_i ($i=1,2,\dots,d$),则按公式(6-9)计算($S^3 N$)_x:

$$(S^{3}N)_{x} = \sum_{i=1}^{d} [(\Delta \sigma_{i})^{3} n_{i}]$$
 (6-9)

式中, $\Delta \sigma_i = (\Delta \sigma_m)_i + (\Delta \sigma_B)_i$

6.2.5.3 在计算非恒幅疲劳的($S^{3}N$)_x时,所有小于表 6-2 规定的最小应力变化范围($\Delta\sigma$)_{min},可以忽略不计。

6.2.5.4 容器受双向应力疲劳作用时,其疲劳评定按单向应力疲劳评定方法进行。

表 6-2 计算非恒幅疲劳的(S³N)_x时可忽略的最小应力变化范围(Δσ)_{nun}

(S ³ N) _x 值	$(\Delta \sigma)_{\min}/\mathrm{MPa}$
1.52×10 ¹²	42
1.04×10 ¹²	37
6.33×10 ¹¹	32
4. 31×10 ¹¹	28
2.50×10 ¹¹	23

6.2.6 (S³N),的确定

注:表 6-3~表 6-7 中的 E 为器壁评定温度下该金属材料的弹性模量。

6.2.6.1 对于气孔缺陷,根据气孔率由表 6-3 确定所容许承受的疲劳强度参量(S³N),值;

6.2.6.2 对于夹渣缺陷,根据夹渣长度以及焊缝是否进行焊后消氢热处理的情况,按表 6-4 或表 6-5 确定所容许承受的疲劳强度参量(S³N),值;

6.2.6.3 对于容器壁厚 $B=10\sim25 \text{ mm}$ 、深度<1 mm的咬边缺陷,根据咬边深度和壁厚 B的比值,按表 6-6 或表 6-7 确定所容许承受的疲劳强度参量($S^{3}N$)、的值。

表 6-3 含气孔焊接接头容许承受的疲劳强度参量(S³N),

气孔在射线底片上所占的面积	(<i>S[*]N</i>),值
3 %	$4.980 \times 10^{8} E$
5%	$1.196 imes 10^{\circ} E$

表 6-4 含夹渣的焊态焊接接头容许承受的疲劳强度参量(S³N),

最大夹渣长度/mm	(S ³ N), 值
2.5	$7.270 imes10^6E$
4.0	$4.980 \times 10^6 E$
10	$3.029 \times 10^{6} E$
35	2,062×10 ⁶ E
>35	$1.196 \times 10^{6} E$

表 6-5 含夹渣的经消氢热处理的焊接接头容许承受的疲劳强度参量 $(S^3N)_y$

最大夹渣长度/mm	(S ^s N), 值
19	7.270 $ imes$ 10° E
58	4. 980 $ imes$ 10 ⁶ E
>58	$1.196 imes 10^6 E$

(S ³ N), 值	
7. 270 $ imes$ 10 ⁶ E	
4. 980 \times 10 ⁶ E	
$3.029 \times 10^{6} E$	
1. $196 \times 10^{6} E$	
	($S^3 N$),值 7.270×10 ⁶ E 4.980×10 ⁶ E 3.029×10 ⁶ E 1.196×10 ⁶ E

表 6-6 含咬边的对接焊接接头容许承受的疲劳强度参量(S³N),值

表 6-7 含咬边的角接焊接接头容许承受的疲劳强度参量(S³N), 值

	•	
最大咬边深度/壁厚	(<i>S</i> ³ <i>N</i>), 值	
0.050	3. $029 \times 10^6 E$	
0.075	2. $062 \times 10^6 E$	
0. 100	1. $196 \times 10^{6} E$	

6.2.7 安全性评价

如果体积缺陷经评定满足公式(6-10)的规定,则该体积型缺陷是容许的或可以接受的;否则,是不 能容许或不可接受的。

$$(S^3N)_y \geqslant (S^3N)_x \tag{6-10}$$

附录A

(规范性附录)

缺陷间的干涉效应系数

A.1 总则

A.1.1 压力容器在局部范围同时存在多个缺陷时,在缺陷安全评定中必须考虑缺陷间的干涉效应。
 本附录给出了线弹性干涉效应系数 M 和弹塑性干涉效应系数 G 的确定方法。
 A.1.2 本附录的干涉效应系数确定方法仅适用于共面缺陷。

A.2 线弹性干涉效应系数 M 的估算方法

线弹性干涉效应系数 M 按公式(A.1)估算:

$$M = 1 + 0.053 \,\frac{s_0}{s} \tag{A.1}$$

式中,s和s。按5.3的规定确定。

A.3 弹塑性干涉效应系数G的估算方法

A.3.1 应力应变关系符合 Ramberg-Osgood(ROR)关系的材料,G 按公式(A.2)估算:

$$G = \begin{cases} M & 0 \leq L_r \leq L_1 \\ M + A_1(0,076 \ n - 0.19)(L_r - L_1) & L_1 < L_r \leq 1.0 \\ G_1 & 1.0 < L_r < L_r^{\max} \end{cases}$$
(A.2)

式中,n为材料硬化指数;

L, 取两个裂纹中较大裂纹的 L, 值, 按第5章和附录 C 确定。

$$L_{1} = 0.24 + 0.04(n-5)$$

$$A_{1} = 0.016 \ n - 0.056 + 1.024 \left(\frac{s_{0}}{s}\right) - 0.048 \left(\frac{s_{0}}{s}\right)^{2}$$

$$G_{1} = M + A_{1}(0.076 \ n - 0.190)(1 - L_{1})$$

上式对 5≤n≤12 有效,但对 n<5 的材料可保守地取 n=5 进行计算。

不同 n 下的 L₁ 列于表 A. 1。不同 s/s₀ 和 n 下的 M 和 G₁ 值列于表 A. 2。
 A. 3.2 屈服应变平台长度小于 0.02 的短屈服平台材料,G 按公式(A. 3)估算:

$$G = \begin{cases} M & 0 \leqslant L_{r} \leqslant L_{2} \\ M+0.1(L_{r}-L_{2}) & L_{2} < L_{r} \leqslant L_{3} \\ G_{2}+B_{1}(L_{r}-L_{3}) & L_{3} < L_{r} \leqslant 0.90 \\ G_{3}+B_{2}(L_{r}-0.90) & 0.90 < L_{r} \leqslant 1.00 \\ G_{4}-B_{3}(L_{r}-1.00) & 1.00 < L_{r} \leqslant 1.05 \\ G_{5} & 1.05 < L_{r} \leqslant L_{r}^{\max} \end{cases}$$
(A.3)

式中,L,取两个裂纹中较大裂纹的L,值,按第5章和附录C确定。

$$L_2 = 0.30 + 0.50\log(s/s_0)$$

$$L_3 = 0.63 + 0.31\log(s/s_0)$$

$$B_1 = 1.22 + 0.60\log(s/s_0)$$

$$B_{2} = 6.97 - 4.50 \log(s/s_{0})$$

$$B_{3} = 18.2 - 12.5 \log(s/s_{0})$$

$$G_{2} = M + 0.1(L_{3} - L_{2})$$

$$G_{3} = G_{2} + B_{1}(0.90 - L_{3})$$

$$G_{4} = G_{3} + 0.1B_{2}$$

$$G_{5} = G_{4} - 0.05B_{3}$$

不同 s/s_0 下的 L_2 , L_3 , M, G_2 , G_3 , G_4 , G_5 值列于表 A. 3。

A.3.3 屈服应变平台长度大于 0.02 及理想弹塑性材料

当 L₁≪0.95 时,G 值可按公式(A.2)估算。

表 A.1 ROR 关系材料裂纹干涉效应系数计算中不同 n 下的 L₁ 值

n	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0
L_1	0.24	0.26	0.28	0, 30	0.32	0.34	0.36	0.38	0.40	0.42	0.44

表 A.2 ROR 关系材料裂纹干涉效应系数计算中不同 s/s₀ 和 n 下的 M 和 G₁ 值

							n					
s/s_0	М	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8,5	9.0	9.5	10.0
							G_1					
1.0	1.053	1.197	1, 223	1.247	1,270	1, 293	1, 313	1.333	1.351	1.368	1.383	1.397
1.2	1.044	1.166	1.187	1.208	1.228	1.247	1,265	1.282	1.298	1.313	1.326	1.339
1.4	1.038	1.143	1.162	1.180	1.198	1,215	1,231	1.246	1.260	1.273	1.285	1.296
1.6	1.033	1.126	1.143	1.159	1.175	1.190	1.204	1.218	1,231	1.243	1.254	1.264
1.8	1.029	1.112	1.128	1.143	1.157	1.171	1.184	1.196	1.208	1.219	1.230	1, 239
2.0	1.027	1.102	1.116	1.129	1.143	1.155	1, 167	1.179	1.190	1.200	1.210	1.219
2.2	1.024	1.093	1,106	1.118	1, 131	1.143	1.154	1.165	1.175	1,185	1.194	1.202
2.4	1.022	1.085	1.098	1.109	1,121	1.132	1, 143	1,153	1.162	1.172	1.180	1.188
2.6	1.020	1.079	1.091	1.102	1, 112	1.123	1.133	1.143	1.152	1.161	1.169	1.177
2.8	1.019	1.074	1.084	1.095	1.105	1,115	1.125	1.134	1.143	1.151	1.159	1.166
3.0	1.018	1.069	1.079	1.089	1.099	1.108	1.117	1.126	1.135	1.143	1.150	1.158
3.2	1.017	1.065	1.075	1.084	1.093	1. 102	1.111	1.120	1.128	1.136	1.143	1.150
3.4	1.016	1.061	1.071	1.080	1.089	1.097	1.106	1.114	1.122	1.129	1.136	1.143
3.6	1.015	1.058	1.067	1.076	1.084	1.093	1,101	1.109	1.116	1.124	1.130	1.137
3.8	1.014	1.055	1.064	1.072	1.080	1.088	1,096	1.104	1.111	1.118	1.125	1.132
4.0	1.013	1.053	1.061	1.069	1.077	1.085	1.092	1.100	1.107	1.114	1.120	1.127
4.2	1.013	1.050	1.058	1.066	1.074	1.081	1.089	1.096	1.103	1.110	1.116	1.122
4.4	1.012	1.048	1.056	1,063	1.071	1.078	1.085	1.092	1.099	1.106	1.112	1.118
4.6	1.012	1.046	1.054	1.061	1.068	1.075	1.082	1.089	1.096	1.102	1.109	1.115
4.8	1.011	1.045	1.052	1, 059	1.066	1,073	1.080	1.086	1.093	1.099	1.105	1.111
5.0	1.011	1.043	1.050	1.057	1.063	1.070	1.077	1.084	1.090	1.096	1.102	1.108

表 A.3 短屈服平台材料干涉效应系数计算中诸函数与 s/s。的关系的对照表

s/ s ₀	L ₂	L_3	М	G_2	G_3	G_{i}	G_{5}
1.0	0.300	0.630	1.053	1.086	1. 415	2.112	1.202
1.2	0.340	0.655	1.044	1.076	1.387	2.048	1.188
1.4	0.373	0.675	1.038	1.068	1.362	1.993	1.174
1.6	0.402	0.693	1.033	1.062	1.340	1.945	1.162
1.8	0.428	0,709	1.029	1.058	1.320	1.902	1.151
2.0	0.451	0.723	1.027	1.054	1.301	1.863	1.141
2.2	0.471	0.736	1.024	1.051	1.284	1.827	1.131
2.4	0.490	0.748	1.022	1.048	1.268	1.794	1.122
2.6	0.507	0.759	1.020	1.046	1,253	1.763	1.113
2.8	0.524	0.769	1.019	1.043	1.239	1.735	1.104
3.0	0.539	0.778	1.018	1.042	1.226	1.708	1.096
3.2	0.553	0.787	1.017	1.040	1.213	1.682	1.088
3.4	0.566	0, 795	1.016	1.038	1.200	1.658	1.080
3.6	0.578	0.802	1.015	1.037	1.189	1.635	1.073
3.8	0.590	0.810	1.014	1.036	1.117	1.614	1.066
4.0	0.601	0,817	1.013	1.035	1.167	1.593	1.059
4.2	0.612	0, 823	1.013	1.034	1.156	1.573	1.052
4.4	0. 622	0,829	1.012	1.033	1.146	1.554	1.046
4.6	0.631	0.835	1.012	1.032	1.136	1,535	1.039
4.8	0.641	0,841	1.011	1.031	1.127	1.517	1.033
5.0	0.649	0.847	1.011	1.030	1.118	1.500	1.027

附录B

(规范性附录)

材料性能数据的测定和选取方法

B.1 材料拉伸性能数据的测试和选取

B.1.1 拉伸性能按 GB/T 228—2002 测定。屈服强度取下屈服点或 0.2%条件屈服强度。焊接热影 响区的拉伸性能取母材和焊缝金属中的较低值。

B.1.2 在未能实测被评定材料拉伸性能的情况下,可以参照 GB 150—1998 和相应钢号的材料标准选 取材料的有关拉伸性能指标。

B.1.3 未能实测而又不能从有关标准中查到相应数据时,可通过可靠的方法利用硬度测定值估算材 料强度的参考值。

B.2 材料断裂韧度的测定方法

B.2.1 缺陷评定中所使用的材料断裂韧度应采用标准实验方法来确定。

- **B. 2.2** CTOD 断裂韧度应按 GB/T 2358—1994 规定的方法测定。可采用下列两种 CTOD 的临界值: δ_c ——稳定裂纹扩展量 $\Delta a < 0.2 \text{ mm}$ 的脆性失稳断裂点或突进点所对应的 CTOD 值。
 - $\delta_i \delta_R$ 曲线上裂纹扩展量 $\Delta a = 0.2 \text{ mm}$ 所对应的 CTOD 值。

B.2.3 J积分试验应按 GB/T 2038-1991 进行。可采用下列两种 J 的临界值:

 J_c ——稳定裂纹扩展量 $\Delta a < 0.2 \text{ mm}$ 的脆性断裂点或突进点所对应的 J 积分值。

J_{IC}——按 GB/T 2038—1991 的规定测定的延性断裂韧度值。

B.2.4 CTOD 和 J 积分试验中,载荷-位移曲线上的突进(Pop-in)行为,应按 GB/T 2358—1994 中的 9.1.3 进行检验。

注:尽管按该标准的准则可以忽略某些单个"突进"扩展量,但这并不表示已经测得断裂韧度的下限值。特别是对 焊接接头这类非均质材料,试验后有必要对试样进行解剖检查,以确认裂纹尖端已处于有最大数量微观脆性组 织的区域。

B.2.5 如果被测材料较脆,测定 j_{tc}值有困难,可按 GB 4161—1984 测定平面应变断裂韧度 K_{tc}用于 评定。

B.2.6 用伸张区测量值估算断裂韧度

B. 2. 6. 1 在不能用标准方法进行断裂韧度测试时,容许用金相剖面法测定获得 CTOD 起裂值 δ_{is} 和估 算 J 起裂值 J_{is} 。

B.2.6.1.1 按 GB/T 2358—1994 附录 B"剖面法测定 CTOD 值"的规定进行试验,并获得 δ_{is}。

B.2.6.1.2 对 s=4 W, a/W=0.4~0.7 的三点弯曲试样,按下列方法确定 Jis:

- a) 按 GB/T 2038—1991 获得试样的 P-Δ 曲线,见图 B.1;
- b) 按 GB/T 2038—1991 的 3.2.5.2 测得 Δδ_ρ;
- c) $\exists \mathbf{\hat{\mu}}(\Delta_{p})_{F} (\Delta_{p})_{C} = \Delta \delta_{p} \frac{1}{0.44(1-a/W)};$
- d) 按图 B.1 在 $P-\Delta$ 曲线上确定起裂点 C;
- e) 按 GB/T 2038—1991 计算 J_{is}。

B.2.7 如果被评定容器的服役条件中存在介质和温度等环境因素的影响,则应在实测数据时的试验 条件中加以考虑。

图 B.1 P-Δ曲线

B.3 实测断裂韧度数据的选用

B.3.1 当采用单试样法测定时,断裂韧度取三个同类试验结果的最低值。对 CTOD 和 J 积分试验,当 最低值小于三个试验结果平均值的 50%或最大值大于平均值的 2 倍时,应追加三个同样的试样并采用 全部六个试样数据中的第二个最低值作为评定用数据;如果进行了更多的追加试验,则按表 B.1 的当 量值选取评定用数据。

表 B.1 最低值的当量值

试验次数	当量值
3~5	最低值
6~10	第二个最低值
11~15	第三个最低值

B.3.2 采用多试样法测定时,应按最小二乘回归方法获得的数值减去1倍标准偏差所得的值作为评 定用数据。

B.4 断裂韧度的代用或参考数据的选用原则和方法

B.4.1 在未能获得实测断裂韧度数据的情况下,对有使用经验的压力容器常用钢材,容许从规范性引用文件有关标准或资料中选取代用数据,但应对数据的选取作出有足够依据的说明。

B.4.2 在选取代用的断裂韧度数据时,应了解被评定容器的运行环境条件(容器所在的外部环境介质 条件、内部介质和操作温度等)。如果被评定的是表面缺陷,则应考虑环境介质的影响;对埋藏缺陷,一 般可不考虑这种影响。不论是表面缺陷还是埋藏缺陷,都应考虑温度的影响。对有环境介质和或温度 影响的容器,还应考虑服役期间材料性能的退化效应。

B.4.3 被评定部位材料的化学成分、冶金和工艺状态等,在选取代用或参考数据时,均必须予以充分 注意。对非均质的焊接接头部位,还应考虑局部显微组织对断裂韧度的影响。

B.4.4 试验测定时的试样、取向和试验条件及试验方法等,在选取代用或参考数据时,这些因素各自产生的影响也必须予以充分注意。

B.4.5 可以从每种材料推荐数据的不同断裂韧度水平中选取合适的代用或参考数据,但必须保证所 选用的评定数据使评定结果偏于保守和安全。

B.4.6 对延性撕裂的情况,本附录规定的是条件起裂值。在评定各方协商一致的情况下,也可以选取 更为保守的其他起裂值(如 $\delta_{0.05}$ 或 $J_{0.05}$)。

附录C

(规范性附录)

载荷比 L, 参量的计算

C.1 总则

C.1.1 本附录提出了基于极限分析方法和净截面屈服准则局部解的含缺陷结构和压力容器的塑性极限载荷解、塑性屈服载荷解和 L, 的计算式,适用于平面缺陷的简化评定和常规评定。

C.1.2 L^{max} 的确定

L^{mex} 的确定方法见本标准 5.7.1 的规定。

C.1.3 L, 计算中所需应力的确定

在 L_r 的计算中只考虑一次应力,不考虑二次应力。在计算时需要的应力(P_m 及 P_b)和缺陷尺寸(a 及 c)分别按本标准 5.4.2 和 5.3 的规定确定。

C.2 典型结构的 L, 计算式

C.2.1 平板上半椭圆表面裂纹(裂纹 a×2c,板厚 B,板宽 2W)

$$L_{\rm r} = \frac{P_{\rm b} + \sqrt{P_{\rm b}^2 + 9(1 - \zeta)^2 P_{\rm m}^2}}{3(1 - \zeta)^2 \sigma_{\rm s}}$$
(C.1)

式中, $\zeta = \frac{ac}{B(c+B)}$,

适用范围:a/B≤0.8且(c+B)/W≤1.0,也可用于压力容器。 C.2.2 平板上椭圆形埋藏裂纹(裂纹 2a×2c,板厚 B,板宽 2W)

$$L_{r} = \frac{(3\zeta P_{m} + P_{b}) + \sqrt{(3\zeta P_{m} + P_{b})^{2} + 9[(1-\zeta)^{2} + 4\zeta \gamma]P_{m}^{2}}}{3[(1-\zeta)^{2} + 4\zeta \gamma]\sigma_{s}}$$
(C.2)

式中, $\zeta = \frac{2ac}{B(c+B)};$ $\gamma = \frac{p_1}{B};$

▶□──缺陷距板表面最近处距离(指被评定裂尖位置)。

适用范围:2a/B≤0.8 且(c+B)/W≤1.0,也可用于压力容器。

C.2.3 平板中长 2a 穿透裂纹(板厚 B,板宽 2W)

$$L_{\rm r} = \frac{P_{\rm b} + \sqrt{P_{\rm b}^2 + 9P_{\rm m}^2}}{3(1 - 2a/W)\sigma_{\rm s}}$$
(C.3)

适用范围:a≪W。

C.2.4 内压圆筒体上长 2a 纵向穿透裂纹(板厚 B,内径 R_i)

$$L_{\rm r} = \frac{1.2P_{\rm m}}{\sigma_{\rm s}} \sqrt{1 + 1.6a^2/(R_{\rm i}B)}$$
 (C.4)

适用范围:B/Ri ≤0.1。

C.2.5 内压球壳上长 2a 穿透裂纹(板厚 B,内径 R_i)

$$L_{\rm r} = \left(\frac{P_{\rm m}}{\sigma_{\rm s}}\right) \frac{1 + \sqrt{1 + 8a^2 / [R_{\rm i}B\cos^2(a/R_{\rm i})]}}{2}$$
(C.5)

适用范围:B/Ri≤0.1。

$$L_{\rm r} = \left(\frac{1.2P_{\rm m}}{\sigma_{\rm s}}\right) \frac{1 - a/(BM_{\rm g})}{1 - a/B}$$
 (C.6)

式中, $M_g = \sqrt{1+1.6[c^2/(R_iB)]}$ 。

C.2.7 容器接管拐角裂纹(四分之一圆形裂纹)

$$L_{\tau} = \frac{P_{\rm b} + \sqrt{P_{\rm b}^2 + 9(1-\zeta)^2 P_{\rm m}^2}}{3(1-\zeta)^2 \sigma_{\rm s}}$$
 (C.7)

式中;

 $\zeta = a/B_{\min}$

B_{min}为接管内拐角至外拐角间的距离;

Pm、Pb----垂直裂纹平面方向在 Bmin 厚度上分布的应力。

适用范围:a/B_{min} ≤0.8。

C.2.8 仅受内压 p 的容器接管拐角裂纹(四分之一圆形裂纹)

$$L_{\rm r} = \left(\frac{p}{\sigma_{\rm s}}\right) \frac{A_{\rm p}}{A_{\rm s} - \pi a^2/4} \tag{C.8}$$

式中:

 A_p ——内压 p 的作用面积;

A,-----接管承载面积,详见图 C.1、图 C.2。

图 C.1 圆筒形容器接管拐角裂纹。在仅受内压作用计算 L,时需要采用的 受压面积 A,和承载面积 A,的定义

图 C.2 球形容器接管拐角裂纹。在仅受内压作用计算 L,时需要采用的 受压面积 A,和承载面积 A,的定义

图中:

$$\begin{split} l_{s} &= 0.4 \sqrt{R_{in}B_{n}};\\ l_{m} &= \begin{cases} 0.4 \sqrt{R_{i}B}\\ 2R_{in}/3 \end{cases} & \text{ 两者中较小者,适用于圆筒形容器;}\\ l_{m} &= \begin{cases} 0.4 \sqrt{R_{i}B}\\ R_{in} \end{cases} & \text{ 两者中较小者,适用于球形容器.} \end{cases} \end{split}$$

适用范围: $a/\sqrt{4A_{s}/\pi} \leq 0.8$ 。

附录D

(规范性附录)

应力强度因子 K₁的计算

D.1 总则

D.1.1 本附录提供了含缺陷结构和压力容器在承载情况下,缺陷尖端部位的应力强度因子 K₁的计算式,适用于平面缺陷的断裂常规评定,也适用于疲劳评定。

D.1.2 本附录提供了各种典型结构的 K_1 和 f 的计算式,同时提供了 f 的图表以供查取。

D.1.3 计算 K₁时所需裂纹尺寸和应力值的确定

在平面缺陷断裂常规评定计算 K_1 时,所输入的裂纹尺寸 a_xc 和应力值 $\sigma_m x_\sigma_B$ 或 $P_m x_b P_b x_Q_m x_b$,应 按本标准 5.3 和 5.4 的规定确定。

D.1.4 疲劳评定所需应力强度因子变化范围 △K 的计算规则

D. 1. 4. 1 本附录 D. 2 中所列各种 K_1 计算式形式和所附图表,均适用于按本标准第6 章进行缺陷的疲 劳评定时有关 $\Delta K_x \Delta K_x$ 、 ΔK_c 的计算。

D.1.4.2 采用本附录所列 K_1 的计算式进行相应的 $\Delta K_{\Lambda} \Delta K_{\bullet}$ 、 ΔK_{\bullet} 的计算时,应进行参数替代,具体 规则如下:

- a) 算式中的 σ_m, σ_B 分别以 $\Delta \sigma_m, \Delta \sigma_B$ 替代,则所得 K_I 即为 ΔK_i
- b) 若 Δσ_m、Δσ_B 分别为一次应力变化范围 ΔP_m、ΔP_b 时,则所得结果是一次应力变化引起的应力 强度因子变化范围 ΔK^p;若 Δσ_m、Δσ_B 分别为二次应力变化范围 ΔQ_m、ΔQ_b 时,则所得结果是二 次应力强度因子变化范围 ΔK^s;
- c) 计算裂纹尺寸 a 方向裂尖处的应力强度因子变化范围 ΔK_a 时,应采用 a 方向的裂纹构形因子 f_n^A, f_b^A ;计算裂纹尺寸 c 方向裂尖处的应力强度因子变化范围 ΔK_c 时,应采用 c 方向的裂纹构 形因子 f_n^B, f_b^A 。

D.1.4.3 ΔK 计算中所需输入的裂纹尺寸 $a \, c \, n \, c \, D \, \overline{v} \, t \, \overline{n}$ 围值 $\Delta \sigma_m \, \Delta \sigma_B \, \overline{v} \, \Delta P_m \, \Delta P_b \, \Delta Q_m \, \Delta Q_b$, 应按本标准 5.3 和 6.1 的规定确定。

D.2 典型结构的 K_1 计算式

D.2.1 含长 2a 穿透裂纹的板壳(板宽 2W,板长 2L)

$$K_1 = \sqrt{\pi a} (\sigma_m + \sigma_B) \qquad (D.1)$$

适用范围:a/W≪0.15 且 a/L≪0.15。

D.2.2 含半椭圆表面裂纹(a×2c)的板壳(板宽 2W,板长 2L,板厚 B)

$$K_1 = \sqrt{\pi a} (\sigma_{\rm m} f_{\rm m} + \sigma_{\rm B} f_{\rm b}) \qquad (\text{ D. 2})$$

其中,

$$\begin{split} f_{\rm m}^{\rm A} &= \frac{1}{\left[1+1.464\left(\frac{a}{c}\right)^{1.65}\right]^{0.5}} \bigg\{ 1.13-0.09 \frac{a}{c} + \left(-0.54+\frac{0.89}{0.2+\frac{a}{c}}\right) \left(\frac{a}{B}\right)^2 \\ &+ \left[0.5-\frac{1}{0.65+\frac{a}{c}} + 14\left(1-\frac{a}{c}\right)^{24}\right] \left(\frac{a}{B}\right)^4 \bigg\} \\ f_{\rm b}^{\rm A} &= \Big\{1 + \left(-1.22-0.12 \frac{a}{c}\right) \frac{a}{B} + \left[0.55-1.05\left(\frac{a}{c}\right)^{0.75} + 0.47\left(\frac{a}{c}\right)^{1.5}\right] \left(\frac{a}{B}\right)^2 \Big\} f_{\rm m}^{\rm A} \\ f_{\rm m}^{\rm B} &= \Big\{ \left[1.1+0.35\left(\frac{a}{B}\right)^2\right] \left(\frac{a}{c}\right)^{0.5} \Big\} f_{\rm m}^{\rm A} \end{split}$$

$$f_{\rm b}^{\rm B} = \left[1 - 0.34 \frac{a}{B} - 0.11 a^2 / (cB)\right] f_{\rm m}^{\rm B}$$

式中,上标 A 表示求裂纹深度处 K_1 时用的系数;上标 B 表示求裂纹长度方向两端点处 K_1 时用的系数。

 $f_m^A, f_b^A, f_b^B, f_b^B$ 可分别由表 D.1 至表 D.4 直接查得。 适用范围: $a/B \le 0.8, a/c \le 1.0, c/L \le 0.15, c/W \le 0.15$ 。

D.2.3 含椭圆埋藏裂纹(2a×2c)的板壳(板宽 2W,板厚 B)

$$K_{1} = \sqrt{\pi a} (\sigma_{\rm m} f_{\rm m} + \sigma_{\rm B} f_{\rm b}) \qquad (\text{ D. 3 })$$

式中,

$$f_{\rm m}^{\rm A} = \frac{1.01 - 0.37 \frac{a}{c}}{\left\{1 - \left(\frac{2a/B}{1 - 2e/B}\right)^{1.8} \left[1 - 0.4 \frac{a}{c} - \left(\frac{e}{B}\right)^2\right]\right\}^{0.54}}$$

$$f_{\rm b}^{\rm A} = \frac{\left(1.01 - 0.37 \frac{a}{c}\right) \left\{2e/B + a/B + 0.34a^2/(cB)\right\}}{\left\{1 - \left(\frac{2a/B}{1 - 2e/B}\right)^{1.8} \left[1 - 0.4 \frac{a}{c} - \left(\frac{e}{B}\right)^2\right]\right\}^{0.54}}$$

$$f_{\rm m}^{\rm B} = \frac{1.01 - 0.37 \frac{a}{c}}{\left\{1 - \left(\frac{2a/B}{1 - 2e/B}\right)^{1.8} \left[1 - 0.4 \frac{a}{c} - 0.8\left(\frac{e}{B}\right)^{0.4}\right]\right\}^{0.54}}$$

$$f_{\rm b}^{\rm B} = \frac{\left(1.01 - 0.37 \frac{a}{c}\right) \left[2e/B - a/B - 0.34a^2/(cB)\right]}{\left\{1 - \left(\frac{2a/B}{1 - 2e/B}\right)^{1.8} \left[1 - 0.4 \frac{a}{c} - 0.8\left(\frac{e}{B}\right)^{0.4}\right]\right\}^{0.54}}$$

式中,e为埋藏裂纹中心与板厚中心的偏移量。

 f_m^A 、 f_b^A 、 f_m^B 、 f_b^B 也可由表 D.5 至表 D.8 查得。但表中以缺陷离表面的最近距离 p_1 表示,而不用参量 e_1 它们之间的关系是 $p_1 + a + e = B/2$ 。

适用范围:a/B≤0.45(1-2e/B),a/c≤1.0,c/W≤0.15,e/B<0.5。

D.2.4 焊趾处的表面裂纹(深为 a,长为 2c 的半椭圆形)(见图 D.1)

$$K_{I} = \sqrt{\pi a} \left(\sigma_{m} f_{m}^{\Lambda} M_{km} + \sigma_{B} f_{b}^{\Lambda} M_{kb} \right) / \Phi$$
 (D.4)

式中:

K₁——裂纹最深处的值;

f^A_m、f^A_b----可由表 D.1 及表 D.2 查得;

M_{km}、M_{kb}——可由表 D.9 及表 D.10 查得;

 Φ ——第二类椭圆积分,其近似值为 $\Phi = [1+1.464 \times (a/c)^{1.65}]^{0.5}$,或由下查得:

a/c	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Φ	1.00	1.02	1.05	1.10	1.15	1.21	1.28	1,35	1.42	1.50	1.57

D.2.5 十字接头中的焊根裂纹(见图 D.2)

$$K_{1} = \sigma_{\rm m} M_{\rm k} \sqrt{\pi a \sec(\pi a/L_{\rm w})}$$
 (D.5)

式中, M_k 值可由表 D. 11 查得。

适用范围: $0.2 \leq h_w/B \leq 1.2, 0.0 \leq 2a/L_w \leq 0.7$ 。

D.2.6 仅受内压圆筒的四分之一圆形接管拐角裂纹(见图 D.3)

$$K_1 = P_m \sqrt{\pi a} \left(1 + \sqrt{\frac{R_{in}B_n}{R_iB}} \right) f_{cc} \qquad (D.6)$$

式中, f. 由下查得:

a/B	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
f_{cc}	1.88	1.74	1.60	1.49	1.38	1.30	1.22	1.18	1.13

适用范围: $a/B \leq 0.8$, $R_{in}/R_i \leq 0.4$ 。

D.2.7 仅受内压圆筒接管拐角椭圆裂纹

$$K_{1} = M_{\sigma}F_{\rm ch}P_{\rm m} \frac{\sqrt{\pi a}}{\varPhi} \left[\left(\frac{4}{\pi} + \frac{ac}{2B_{\rm in}R_{\rm in}}\right) / \left(\frac{4}{\pi} + \frac{ac}{B_{\rm in}R_{\rm in}}\right) \right]^{1/2}$$
(D.7)

式中, a_xc 为拐角裂纹在接管侧和容器侧的裂纹长度, R_m 为接管内半径, P_m 为容器薄膜应力; Φ 为椭圆裂纹形状因子,可用以下经验式表示:

$$\begin{cases} \Phi = \sqrt{1+1.46(a/c)^{1.65}} & \\ \exists a/c \leq 1.0 & \\ \theta = \sqrt{1+1.46(c/a)^{1.65}} & \\ \exists a/c > 1.0 & \\ \end{bmatrix}$$

M。为应力集中修正因子,可用以下公式计算:

$$M_{\sigma} = K_{i}/3$$

其中,K,为接管拐角的弹性应力集中系数,优先选用实测值;无实测值时用下式计算:

$$K_{1} = \frac{2 + 2 \frac{D_{n}}{D} \left(\frac{D_{n}B_{n}}{DB}\right)^{1/2} + 1.25 \frac{D_{n}}{D} \left(\frac{D}{B}\right)^{1/2}}{1 + \frac{B_{n}}{B} \left(\frac{D_{n}B_{n}}{DB}\right)^{1/2}}$$

F_{ch}为接管拐角裂纹的边界修正因子,可用以下公式计算:

 $F_{\rm cb} = [M_1 + M_2 (a_{45}/B_{45})^2 + M_3 (a_{45}/B_{45})^4]g_1g_2g_3g_4f_{\varphi}$

其中, $f_{\varphi} = [(a/c)^2 \cos^2 \varphi + \sin^2 \varphi]^{1/4}$ 。拐角裂纹在简内壁处 C 点(图 D.3)的 $\varphi = 0$,在接管内壁处的 B 点的 $\varphi = \frac{\pi}{2}$;

*a*₄₅,*B*₄₅分别为接管拐角平分线方向的拐角裂纹深度和容器壁厚。 其他系数计算如下:

对 a/c≤1.0:

对

$$\begin{split} M_1 &= 1, 13 - 0.09a/c \\ M_2 &= -0.54 + \frac{0.89}{0.2 + a/c} \\ M_3 &= 0.5 - \frac{1}{0.65 + a/c} + 14(1 - a/c)^{24} \\ g_1 &= 1 + [0, 1 + 0.35(a_{45}/B_{45})^2](1 - \sin\varphi)^2 \\ g_2 &= \frac{1 + 0.358\lambda + 1.425\lambda^2 - 1.578\lambda^3 + 2.156\lambda^4}{1 + 0.13\lambda^2} \\ \vec{x}_1 + \cdot \lambda &= \frac{1}{1 + (c/R_{in})\cos(0.85\varphi)} \\ g_3 &= (1 + 0.04a/c)[1 + 0.1(1 - \cos\varphi)^2][0.85 + 0.15(a_{45}/B_{45})^{1/4}] \\ g_4 &= 1 - 0.7(1 - a_{45}/B_{45})(a/c - 0.2)(1 - a/c) \\ a/c > 1.0; \\ M_1 &= (c/a)^{1/2}(1 + 0.04c/a) \\ M_2 &= 0.2(c/a)^4 \\ g_1 &= 1 + [0, 1 + 0.35(c/a)(a_{45}/B_{45})^2](1 - \sin\varphi)^2 \\ g_2 &= a/c \leqslant 1 \text{ Bf} \text{ ff} g_2 \text{ ff} \text{ ff} \\ g_3 &= (1, 13 - 0.09c/a)[1 + 0.1(1 - \cos\varphi)^2][0.85 + 0.15(a_{45}/B_{45})^{1/4}] \\ g_4 &= 1 \end{split}$$

也可由表 D. 12、D. 13 及 D. 14、D. 15 查得拐角裂纹在简体表面及接管表面的 F_{ch}/g_2 及 g_2 值,由 F_{ch}/g_2 的值乘以 g_2 之值则可得到 F_{ch} 。

适用范围: $a_{45}/B_{45} \leqslant 0.8, a/c = 0.2 \sim 2.0, R_{in}/R_i \leqslant 0.4$ 。

图 D.3 内压容器接管四分之一圆形拐角裂纹的结构尺寸

表 D.1 半椭圆表面裂纹的 f_n°

	1.00	0.663	0. 663	0.664	0.665	0.668	0.670	0.674	0.677	0.681	0.686	0. 690	0. 695	0. 700	0. 705	0. 709	0. 713	0.717
	0.95	0.682	0.682	0.684	0.685	0.688	0.691	0. 695	0. 700	0.704	0.710	0.715	0.721	0.726	0. 732	0. 737	0.742	0.746
	0.90	0.702	0.703	0.704	0.706	0.709	0.713	0.718	0, 723	0.729	0.735	0.741	0.748	0.755	0.761	0.767	0.773	0.778
	0.85	0.724	0.724	0.726	0.728	0. 732	0. 736	0.742	0.748	0.754	0.762	0.769	0.777	0. 785	0.792	0, 800	0.806	0.812
	0.80	0.746	0.746	0.748	0.751	0.755	0.761	0.767	0.774	0.782	0.790	0. 799	0.808	0.817	0.826	0.834	0.842	0.849
	0.75	0. 769	0.769	0.772	0.775	0.780	0. 786	0.793	0.801	0.811	0.820	0.831	0.841	0.852	0.862	0.872	0.881	0.889
	0.70	0.792	0. 793	0.796	0.800	0.806	0.813	0.821	0.831	0.841	0.853	0.865	0.877	0.889	0.901	0.913	0.923	0.933
	0.65	0.817	0.818	0, 821	0.826	0.832	0.841	0.850	0.861	0.874	0.887	0.901	0.915	0.930	0.944	0.957	0.970	0.981
	0.60	0.843	0.844	0.847	0.853	0.860	0.870	0.881	0.894	0.908	0.924	0.940	0.957	0.974	0.990	1.006	1.021	1.033
	0.55	0.869	0.870	0.874	0.881	0.889	0.900	0.914	0.929	0.945	0.963	0.982	1.002	1.022	1.041	1.059	1.077	1.092
a/c	0.50	0. 896	0.897	0.902	0, 909	0.920	0. 933	0.948	0, 965	0.985	1.006	1.028	1.051	1.074	1.097	1.119	1. 139	1.158
	0.45	0.923	0.925	0.930	0.939	0.951	0.966	0.984	1.004	1.027	1.052	1.077	1.104	1. 132	1.158	1. 185	1.209	1.231
	0.40	0.951	0.953	0.959	0.969	0.983	1.001	1.022	1.046	1.072	1.101	1. 132	1. 163	1.195	1.228	1.259	1.288	1.315
	0.35	0.979	0.981	0.989	1.000	1.017	1.037	1.062	1.090	1.121	1.155	1.191	1.229	1.267	1.306	1.343	1.379	1.412
	0.30	1.007	1.009	1.018	1.032	1.051	1.075	1.104	1.138	1.175	1.215	1.258	1.303	1.349	1.395	1.441	1.484	1.525
	0.25	1. 033	1.037	1.047	1.063	1.086	1, 115	1.150	1. 189	1.234	1.282	1. 334	1. 388	1.444	1.501	1.557	1.612	1.664
	0.20	1.059	1.063	1.075	1.095	1. 122	1.157	1. 199	1.247	1.301	1. 360	1.424	1.491	1. 561	1. 633	1. 706	1.778	1.848
:	0.15	1.082	1.087	1.102	1.126	1.159	1.202	1. 253	1.313	1.381	1.457	1.540	1.628	1.723	1.822	1.925	2.031	2.140
	0.10	1. 103	1.109	1.127	1. 157	1. 199	1. 253	1.320	1.400	1.492	1. 598	1.717	1.851	1.999	2.162	2.340	2.534	2.746
	0.05	1.120	1.127	1.150	1.189	1.245	1.320	1.416	1. 535	1.681	1.857	2.067	2.316	2.609	2.950	3. 346	3.804	4.330
1	0. 00	1.122	1.140	1.180	1.265	1.367	1.498	1.660	1.861	2. 111	2.425	2.825	3.343	4.033	4.984	6.355	8.453	11.956
a	В	0. 00	0.05	0, 10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80

				2								a	:/c										
0.00 0.05 0.10 0.15 0.20 0.25 0.	0.05 0.10 0.15 0.20 0.25 0.	05 0.10 0.15 0.20 0.25 0.	0.10 0.15 0.20 0.25 0.	0.15 0.20 0.25 0.	0.20 0.25 0.	0.25 0.	°.	30	0.35	0.40	0.45	0.5	50 0.	55 0.	60 0.	. 65	0.70	0.75	0. 80	0.85	0.90	0.95	1.00
1.122 1.120 1.103 1.082 1.059 1.033 1.00	2 1.120 1.103 1.082 1.059 1.033 1.00	120 1.103 1.082 1.059 1.033 1.00	.103 1.082 1.059 1.033 1.00	1.082 1.059 1.033 1.00	1.059 1.033 1.00	1. 033 1. 00	1. 00	~	0.979 (J. 951 (). 923 (0. 896	0.869	0.843	0.817	7 0.7	92 0.	769	0. 746	0, 724	0.702	0.682	0. 663
1.071 1.059 1.042 1.021 0.998 0.973 0.947	$1 1. \ 059 1. \ 042 1. \ 021 0. \ 998 0. \ 973 0. \ 947$	059 1.042 1.021 0.998 0.973 0.947	.042 1.021 0.998 0.973 0.947	1.021 0.998 0.973 0.947	0.998 0.973 0.947	0.973 0.947	0.947		0.920 (J. 893 (), 867 (0.840	0.815	0.789	0.765	5 0.7	42 0.	719	0. 697	0.676	0.656	0.637	0.618
1.047 1.014 0.992 0.969 0.944 0.918 0.892	7 1.014 0.992 0.969 0.944 0.918 0.892	014 0,992 0.969 0.944 0.918 0.892	0.992 0.969 0.944 0.918 0.892	0.969 0.944 0.918 0.892	0.944 0.918 0.892	0.918 0.892	0.892		0.866 (J. 839 (), 813 (0. 787	0. 762	0.738	0.715	5 0.6	92 0.	671	0. 650	0. 630	0.611	0.592	0. 575
1.043 0.982 0.953 0.925 0.897 0.870 0.842	3 0.982 0.953 0.925 0.897 0.870 0.842	982 0.953 0.925 0.897 0.870 0.842	0.953 0.925 0.897 0.870 0.842	0.925 0.897 0.870 0.842	0.897 0.870 0.842	0.870 0.842	0.842		0.815 (J. 788 (). 762 (0. 737	0.712	0.688	0.666	; 0.6	44 0.	623	0. 603	0.584	0. 565	0.548	0. 531
1.055 0.962 0.922 0.887 0.855 0.825 0.795	5 0.962 0.922 0.887 0.855 0.825 0.795	962 0.922 0.887 0.855 0.825 0.795	0.922 0.887 0.855 0.825 0.795	0.887 0.855 0.825 0.795	0.855 0.825 0.795	0.825 0.795	0.795		0.767 (J. 740 (0.713 (0. 688	0.663	0.640	0.617	7 0.5	96 0.	576	0. 556	0.538	0.520	0.504	0.488
1.082 0.952 0.897 0.854 0.817 0.783 0.751 C	2 0.952 0.897 0.854 0.817 0.783 0.751 C	952 0.897 0.854 0.817 0.783 0.751 C	0.897 0.854 0.817 0.783 0.751 C	0.854 0.817 0.783 0.751 0	0.817 0.783 0.751 C	0.783 0.751 C	0.751 C	0	, 721 (J. 692 (), 665 (0. 639	0.615	0.592	0.570) 0.5	49 0.	529	0.510	0.492	0.476	0.460	0.444
1.124 0.951 0.877 0.825 0.781 0.743 0.708 0	4 0.951 0.877 0.825 0.781 0.743 0.708 0	951 0.877 0.825 0.781 0.743 0.708 0	0.877 0.825 0.781 0.743 0.708 0	0.825 0.781 0.743 0.708 0	0.781 0.743 0.708 0	0.743 0.708 0	0.708 0	0	. 676 (J. 646 (0.618 (0. 592	0.567	0.544	0.522	2 0.5	01 0.	482	0.464	0.447	0.431	0.415	0.401
1.183 0.960 0.861 0.797 0.746 0.704 0.666 0.	3 0.960 0.861 0.797 0.746 0.704 0.666 0.	960 0.861 0.797 0.746 0.704 0.666 0.	0.861 0.797 0.746 0.704 0.666 0.	0.797 0.746 0.704 0.666 0.	0.746 0.704 0.666 0.	0.704 0.666 0.	0.666 0.	<u>о</u>	631 (J. 600 (). 571 (0.544	0.519	0.496	0.474	1 0.4	54 0.	435	0.417	0.401	0. 385	0.371	0. 357
1.261 0.976 0.847 0.769 0.711 0.664 0.622 0.	1 0.976 0.847 0.769 0.711 0.664 0.622 0.	976 0.847 0.769 0.711 0.664 0.622 0.	0.847 0.769 0.711 0.664 0.622 0.4	0.769 0.711 0.664 0.622 0.	0.711 0.664 0.622 0.1	0.664 0.622 0.1	0.622 0.	·.	586 (). 553 (). 523 (0.495	0.470	0.447	0.425	5 0.4	05 0.	387	0. 370	0.354	0.339	0.326	0.313
1.363 1.000 0.834 0.741 0.675 0.623 0.578 0.5	3 1.000 0.834 0.741 0.675 0.623 0.578 0.5	000 0.834 0.741 0.675 0.623 0.578 0.5	1.834 0.741 0.675 0.623 0.578 0.5	0.741 0.675 0.623 0.578 0.5	0.675 0.623 0.578 0.5	0.623 0.578 0.5	0.578 0.5	<u>.</u>	539 (). 504 (0.473 (0.445	0.420	0. 397	0.375	5 0.3	56 0.	338	0. 322	0.307	0. 293	0.280	0.268
1.497 1.030 0.822 0.711 0.637 0.579 0.531 0.	7 1.030 0.822 0.711 0.637 0.579 0.531 0.	030 0.822 0.711 0.637 0.579 0.531 0.	0.822 0.711 0.637 0.579 0.531 0.	0.711 0.637 0.579 0.531 0.	0.637 0.579 0.531 0.	0.579 0.531 0.	0.531 0.	õ) 06ŧ	J. 454 (). 422 (0. 394	0.368	0.345	0.324	1 0.3	06 0.	288	0.273	0.259	0.246	0.234	0. 223
1.675 1.066 0.808 0.679 0.596 0.534 0.482 0.	5 1.066 0.808 0.679 0.596 0.534 0.482 0.	066 0.808 0.679 0.596 0.534 0.482 0.	1.808 0.679 0.596 0.534 0.482 0.	0.679 0.596 0.534 0.482 0.	0.596 0.534 0.482 0.	0.534 0.482 0.	0.482 0.	.	439 (J. 402 (), 369 (0.340	0.315	0.292	0.272	2 0.2	54 0.	237	0. 223	0.209	0. 197	0. 186	0.177
1.914 1.107 0.793 0.644 0.552 0.485 0.430 0.	4 1.107 0.793 0.644 0.552 0.485 0.430 0.	107 0.793 0.644 0.552 0.485 0.430 0.	0.793 0.644 0.552 0.485 0.430 0.	0. 644 0. 552 0. 485 0. 430 0.	0.552 0.485 0.430 0.	0.485 0.430 0.	0.430 0.	<u>о</u>	385 (0.347 (0.313 (0. 285	0. 259	0.237	0.218	3 0.2	00 0.	185	0.171	0, 159	0.148	0.138	0. 130
2.246 1.153 0.776 0.605 0.504 0.432 0.375 0	6 1.153 0.776 0.605 0.504 0.432 0.375 0	153 0.776 0.605 0.504 0.432 0.375 0.	0.776 0.605 0.504 0.432 0.375 0.	0.605 0.504 0.432 0.375 0.	0.504 0.432 0.375 0.	0.432 0.375 0.	0.375 0.	Ö	328 (J. 289 (). 255 (0.227	0.202	0.181	0.162	0.1	46 0.	131	0.119	0.108	0, 098	0. 089	0.082
2.725 1.203 0.756 0.563 0.453 0.376 0.316 0	5 1.203 0.756 0.563 0.453 0.376 0.316 0.	203 0.756 0.563 0.453 0.376 0.316 0.	0.756 0.563 0.453 0.376 0.316 0.	0.563 0.453 0.376 0.316 0.	0.453 0.376 0.316 0.	0.376 0.316 0.	0.316 0.	Ö	. 268 (), 228 (). 195 (0. 167	0.143	0.122	0.104	1 0.0	89 0.	076	0. 065	0. 055	0.047	0.040	0.034
3.458 1.257 0.732 0.516 0.397 0.316 0.254	8 1.257 0.732 0.516 0.397 0.316 0.254	257 0.732 0.516 0.397 0.316 0.254 (0.732 0.516 0.397 0.316 0.254	0.516 0.397 0.316 0.254 (0.397 0.316 0.254 (0.316 0.254 (0.254 (-	0.205 (J. 165 (). 132 (0.104	0.081	0.062	0.045	0.0	32 0.	020	0.010	0. 002	-0,005	-0.011	-0.016
4.676 1.314 0.704 0.465 0.338 0.253 0.189	$6 1. \ 314 0. \ 704 0. \ 465 0. \ 338 0. \ 253 0. \ 189$	314 0.704 0.465 0.338 0.253 0.189	0.704 0.465 0.338 0.253 0.189	0.465 0.338 0.253 0.189	0.338 0.253 0.189	0.253 0.189	0.189		0.140 (), 100 (). 067 (0.040	0.018	0.000	-0.01	15 -0.	027 —(). 038 –	- 0. 046 -	-0.053	-0.058	-0.062	-0.065

表 D.3 半椭圆表面裂纹的 f^m

	1.00	0.729	0. 730	0. 733	0. 737	0.744	0.752	0. 762	0.774	0.788	0.803	0.820	0.838	0.858	0.879	0.902	0.925	0.949
	0.95	0.731	0.732	0. 735	0.740	0.747	0, 756	0.767	0.779	0.794	0.810	0.828	0.847	0.868	0.890	0.914	0.938	0.963
	0, 90	0.733	0.734	0.737	0.742	0.750	0. 759	0.771	0.784	0.799	0.816	0.835	0.856	0.878	0.901	0.926	0.951	0.977
	0.85	0. 734	0. 735	0. 738	0.744	0.752	0.762	0.774	0. 788	0.804	0.822	0.842	0.864	0.887	0.912	0.937	0.964	0.991
	0.80	0.734	0. 735	0.738	0.744	0.753	0.763	0.776	0.791	0.808	0.828	0.849	0.872	0.896	0.922	0.949	0.977	1.005
	0.75	0.732	0.734	0.737	0.744	0.752	0.764	0.777	0. 793	0, 812	0.832	0.854	0.879	0.905	0.932	0.960	0.990	1.019
	0.70	0.729	0.731	0. 735	0.741	0.751	0.763	0.777	0.794	0.814	0. 835	0.859	0.885	0.912	0.941	0.971	1. 002	1.033
	0.65	0. 725	0.726	0. 730	0. 738	0.748	0. 760	0.776	0.794	0.814	0. 837	0.863	0.890	0.919	0.950	0.981	1.014	1.047
	0.60	0.718	0.720	0.724	0.732	0.742	0.756	0.772	0.792	0.813	0.838	0.865	0.894	0.925	0.957	0.991	1.025	1.060
/c	0.55	0. 709	0.711	0.715	0.724	0. 735	0.749	0.767	0. 787	0.810	0.837	0.865	0.896	0.929	0.963	0, 999	1.036	1.072
a	0.50	0.697	0. 699	0.704	0.712	0.724	0.740	0. 758	0. 780	0. 805	0.833	0.863	0.896	0.931	0.968	1.006	1.045	1.084
	0.45	0.681	0.683	0. 689	0.698	0.711	0.727	0.747	0.770	0. 796	0.826	0.858	0, 893	0.931	0.970	1.010	1. 052	1.094
	0.40	0.662	0.664	0.670	0.679	0.693	0.710	0. 731	0.756	0.784	0.815	0.850	0.887	0.927	0.969	1.012	1.057	1.101
	0.35	0.637	0.639	0.645	0.656	0.670	0.688	0.711	0.737	0.767	0.800	0.837	0.877	0.919	0.964	1.010	1.058	1.106
	0.30	0.606	0.609	0.615	0.626	0.641	0.661	0.684	0.712	0.744	0.779	0.818	0.861	0.906	0.954	1.003	1.054	1.106
	0.25	0.568	0.571	0.578	0. 589	0.605	0.625	0.650	0.680	0.713	0.751	0. 792	0.837	0.885	0.936	0.990	1.045	1.101
	0.20	0.521	0.523	0.530	0.542	0.559	0.580	0.607	0.637	0.672	0.712	0.756	0.804	0.856	0.911	0.970	1.031	1.094
	0.15	0.461	0.464	0.471	0.483	0.500	0.522	0.549	0.581	0.619	0.661	0. 708	0.761	0.818	0.881	0, 948	1.020	1.097
	0.10	0.384	0.386	0.393	0.405	0.422	0.445	0.472	0. 506	0.546	0. 592	0.645	0.706	0.775	0.853	0.941	1. 039	1.150
	0.05	0.275	0.277	0. 284	0. 295	0.310	0.331	0. 358	0.392	0.434	0.486	0.549	0.625	0.715	0.823	0.951	1. 103	1. 282
a	В	0.00	0.05	0.10	0.15	0.20	0. 25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80

а		,								a	:/c									
B	0. 05	0.10	0.15	0.20	0. 25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0. 75	0.80	0.85	0.90	0.95	1.00
0. 00	0.275	0, 384	0, 461	0.521	0.568	0. 606	0.637	0.662	0.681	0.697	0.709	0.718	0.725	0.729	0.732	0.734	0. 734	0. 733	0.731	0.729
0.05	0.273	0.379	0.455	0.514	0.560	0.597	0.627	0.651	0.670	0.685	0.696	0. 705	0.711	0. 715	0.718	0.719	0.719	0.718	0.716	0.713
0.10	0.274	0.379	0.454	0.511	0.556	0.592	0.621	0.644	0.662	0.676	0.687	0.695	0.700	0.704	0.706	0.707	0.706	0. 705	0. 703	0.700
0.15	0.279	0.384	0.457	0.513	0.557	0, 591	0.618	0.640	0.657	0.670	0.680	0.687	0.692	0.695	0.696	0.697	0. 696	0.694	0.691	0. 687
0.20	0.289	0.393	0.465	0.519	0.561	0. 593	0. 619	0.640	0.655	0.667	0.676	0.682	0.686	0.688	0.689	0.688	0.687	0.684	0.681	0.677
0.25	0.302	0.406	0.476	0.528	0. 568	0.599	0.623	0.642	0.656	0.667	0.674	0.679	0.682	0.683	0.683	0.682	0. 679	0.676	0.672	0.667
0.30	0.321	0.423	0.491	0.541	0.579	0.608	0. 630	0.647	0.660	0.669	0.675	0.678	0.680	0.680	0.679	0.676	0.673	0.669	0.664	0. 659
0.35	0.345	0.444	0. 509	0.556	0, 592	0.619	0. 639	0.654	0.665	0.672	0.677	0.679	0.679	0.678	0.676	0.673	0. 668	0.663	0.658	0.652
0.40	0.374	0.469	0. 530	0.575	0.608	0. 633	0.651	0.664	0.672	0.678	0.681	0.681	0.680	0.678	0.674	0.670	0. 665	0.659	0.653	0.646
0.45	0.411	0, 498	0.555	0. 596	0.626	0.648	0.664	0.675	0.681	0.685	0.686	0.685	0.682	0.679	0.674	0.668	0.662	0. 655	0.648	0.640
0.50	0.454	0. 532	0.582	0.619	0.646	0.666	0.679	0.687	0.691	0.693	0.692	0.689	0.685	0.680	0.674	0.667	0.660	0.652	0.644	0. 635
0.55	0.506	0.570	0.611	0.644	0.668	0.684	0.694	0.700	0.702	0.701	0.699	0.694	0.689	0.682	0.674	0.666	0.658	0.649	0.640	0. 631
0.60	0.567	0.612	0.643	0.670	0.690	0.703	0.710	0.713	0.713	0.710	0.706	0.699	0.692	0.684	0.675	0.666	0.656	0.647	0.637	0.627
0.65	0.638	0.658	0.677	0.697	0.713	0.722	0, 727	0.727	0.724	0.719	0.713	0.705	0.696	0. 686	0.676	0. 665	0. 655	0.644	0. 633	0. 622
0.70	0.721	0.710	0.711	0.724	0. 735	0.741	0.743	0.740	0.735	0.728	0.719	0.709	0.699	0. 688	0.676	0.665	0.653	0.641	0.629	0.618
0.75	0.817	0, 766	0.748	0. 751	0.757	0.759	0.757	0. 752	0.745	0. 735	0.725	0.713	0.701	0. 689	0.676	0.663	0.651	0.638	0.625	0.613
0.80	0.928	0.827	0.784	0, 777	0.778	0. 776	0.771	0. 763	0.753	0.741	0.729	0.716	0. 702	0.688	0.675	0.661	0.647	0.634	0.621	0.608

表 D.5 椭圆埋藏裂纹的 f[≜]

	1.00	0.640	0.640	0.640	0.640	0.640	0.640	0.640	0.640	0.640	0.640	0.688	0.664	0.655	0.650	0.648	0.646	0.645	0.644	0.643	0.737	0.697	0.679	0.668	0.662	0.657	0.654	0 100
	0.95	0.659	0.659	0.659	0.659	0 " 659	0.659	0.659	0.659	0.659	0, 659	0.711	0.684	0.675	0.670	0.667	0.665	0.664	0.663	0.662	0.764	0.720	0.700	0.689	0.682	0.677	0.674	0 671
	0.90	0.677	0.677	0.677	0.677	0.677	0.677	0.677	0.677	0.677	0.677	0.733	0.705	0.694	0.689	0.686	0.684	0.683	0.682	0.681	0.790	0.743	0.721	0.709	0.702	0.697	0.693	0.690
	0.85	0.695	0.695	0. 695	0.695	0.695	0.695	0.695	0.695	0.695	0.695	0.756	0.725	0.714	0.708	0.705	0.703	0.701	0.700	0.699	0.818	0.766	0.743	0.730	0.722	0.717	0.713	0 710
	0.80	0.714	0.714	0.714	0.714	0.714	0.714	0.714	0.714	0.714	0.714	0.779	0.746	0.733	0.727	0.724	0.722	0.720	0.719	0.718	0.845	0. 789	0.764	0.751	0.742	0.736	0.732	0.729
	0.75	0.732	0. 732	0. 732	0.732	0.732	0. 732	0. 732	0.732	0.732	0. 732	0.802	0.766	0.753	0.747	0.743	0.741	0.739	0.738	0.737	0.874	0.813	0. 786	0.771	0.762	0.756	0.752	0.748
	0.70	0.751	0.751	0.751	0. 751	0.751	0.751	0.751	0.751	0. 751	0. 751	0.826	0.787	0.773	0.766	0.762	0.760	0.758	0. 757	0.756	0.902	0.836	0.808	0.792	0.782	0.776	0.771	0, 768
	0.65	0. 769	0. 769	0.769	0. 769	0. 769	0.769	0. 769	0. 769	0. 769	0. 769	0.849	0.808	0. 793	0. 785	0.781	0.779	0. 777	0. 775	0.774	0.931	0.860	0.830	0.813	0.803	0.796	0.791	0.787
	0.60	0. 788	0. 788	0. 788	0. 788	0. 788	0. 788	0. 788	0. 788	0. 788	0. 788	0.873	0.828	0.813	0. 805	0.800	0. 798	0.796	0.794	0.793	0.961	0.884	0.852	0.834	0.823	0.816	0.810	0.806
	0.55	0.806	0.806	0.806	0.806	0.806	0.806	0.806	0.806	0.806	0.806	0.897	0.849	0.832	0.824	0.820	0.817	0.815	0.813	0.812	0.991	0.909	0.874	0.855	0.843	0.836	0.830	0.826
a/c	0.50	0.825	0.825	0, 825	0.825	0.825	0.825	0.825	0.825	0.825	0.825	0.921	0.870	0.852	0.844	0.839	0. 836	0.833	0.832	0.831	1.021	0.933	0.896	0.876	0.864	0.856	0.850	0.845
	0.45	0.843	0.843	0.843	0.843	0.843	0.843	0.843	0.843	0.843	0.843	0.945	0.891	0.872	0.863	0.858	0.855	0.852	0.851	0.849	1.052	0.958	0.918	0.897	0.884	0.876	0.869	0.865
	0.40	0.862	0.862	0.862	0.862	0.862	0.862	0.862	0.862	0.862	0.862	0.969	0.912	0.892	0.883	0.877	0.874	0.871	0.870	0.868	1.084	0.983	0.941	0.918	0.905	0.896	0.889	0.884
	0.35	0.881	0.881	0. 881	0.881	0.881	0.881	0.881	0.881	0.881	0.881	0.994	0.933	0.912	0.902	0.896	0.893	0.890	0.888	0.887	1.116	1.008	0.963	0.940	0.925	0.916	0. 909 (0. 904
	0.30	0.899	0.899 (0.899 (0.899 (0.899 (0.899 (0.899	0.899	0.899 (0.899 (1.019	0.954 (0.932 (0.922 (0.916 (0.912 (0.909 (0.907 (0.906 (l. 149	1.033	0.986 (0.961	0.946 (0.936 (0.929 (0.923 (
	0. 25	0.918	0.918 (0.918	0.918), 918 (), 918 (0.918 (0.918 (0.918 (0.918 (1.044	. 976 (), 952 (.941 (0.935 (. 931), 928 (), 926 (0.925 (l. 182	1. 059	1.009 (), 982 (), 967 (. 956 (.949 (. 943 (
	0. 20	0.936	0.936	0.936 (0.936 (0.936), 936 (. 936 (), 936 (), 936 (0.936 (1. 069	. 997 (), 973 (). 961 (.954 (), 950 (. 947 (.945 (. 943 (. 216	. 084	1. 032	1.004 (), 987 (. 976 (. 968 (.963 (
	0.15	. 954 (. 954 (. 954 (.954 (.954 (. 954 (, 954 (. 954 (. 954 (.954 (. 095	.018 (, 993 (. 980 (, 973 (, 969 (. 966 (. 964 (.962 (. 251	. 110	. 055 1	. 026	. 008 (, 997 (. 988 (, 982 (
	0.10	0.973 (0.973 (0.973 (0.973 (). 973 (0.973 (0.973 (), 973 (0.973 (0.973 (l. 120	I. 040	I.013 (I. 000 (. 993 (), 988 (), 985 (), 983 (. 981 (1.286	l. 136	1.078	1.047	1.029	1.017 (1.008 (1.002 (
	0. 05	. 991 (. 991 (. 991 (. 991 (. 991 () 166 (), 991 (. 991 (0, 991 (. 991 (1.146	. 062	.033	. 020	.012 (.007 (. 004 (. 002 (. 000 (. 322]	. 163	. 101	. 069	.050]	. 037	. 028	. 022]
	0.00	.010 (1.010 (.010 (1.010 (.010 (1,010 (.010	.010	.010 (.010 (. 172	. 083	. 053	. 039	. 031	. 026	. 023	. 021	. 019	. 359	. 189	. 124	. 091	. 071	. 058	. 048	.041
id b	B	0.05	0.10	0.15	0.20	0.25	0.30 1	0.35 1	0.40 1	0.45 1	0.50 1	0.05 1	0.10 1	0.15 1	0.20 1	0.25 1	0.30 1	0.35 1	0.40 1	0.45 1	0.05	0.10	0.15 1	0.20 1	0.25 1	0.30]	0.35 1	0.40 1
a	В					0	> 									0.05								01 0	2			

GB/T 19624-2004

(续)
ഹ
Ō.
表

e	μ											a/c					-					
В	В	0.00	0.05	0, 10	0, 15	0.20	0.25	0. 30	0.35	0.40	0.45	0. 50	0. 55	0.60	0.65	0.70	0.75	0.80	0.85	0, 90	0.95	1.00
	0.05	1.540	1.491	1.444	1. 398	1. 353	1.310	1. 268	1. 227	1. 187	1. 148	1.110	1.073]	. 038	1. 003	0.968	0.935	0.902	0.870	0. 839	0.808	0. 778
	0.10	1.300	1.268	1.236	1.204	1.173	1.143	1.112	1.083	1.053	1.024	0.996 (), 967 (. 940 (0.912	0.885	0.858	0.832	0.806	0. 780	0.754	0.729
	0.15	1.202	1.175	1.148	1. 122	1.095	1.069	1.044	1.018	0.992	0.967	0.942 (.918 (. 893 (0. 869	0.844 (0.821	0.797	0.773	0.750	0.727	0.704
0.15	0.20	1.149	1. 125	1.101	1.076	1.053	1.029	1.005	0.982	0.958	0.935	0.912 (, 889 (). 866 (0.843	0.821	0.798	0.776	0.754	0.732	0.710	0.688
	0.25	1.116	1.094	1.071	1.048	1.026	1.003	0.981	0.958	0.936	0.914	0.892 (0.870 (). 849 (0.827	0.805	0.784	0.763	0.741	0.720	0.699	0.678
	0.30	1.094	1.072	1.051	1.029	1.007	0.986	0.964	0.943	0.921	0.900	0.879 (). 858 (. 837 (0.816	0.795 (0.774	0.753	0. 732	0.712	0.691	0.671
	0.35	1.079	1.057	1.036	1.015	0.994	0.973	0.952	0.931	0.910	0.890	0.869 (). 848 (. 828 (0. 807	0.787	0.766	0.746	0.726	0. 705	0.685	0.665
	0.05	1.721	1.658	1.597	1. 539	1.484	1.430	1.379	1.329	1. 282	1. 236	1. 191	l. 148 1	. 107	1. 066	1.027	0.989	0.952	0.916	0.881	0.847	0.814
	0.10	1.413	1.373	1.335	1, 298	1.261	1.225	1. 190	1. 155	1. 121	1.088	1.055 1	1,023 (), 992 (0.961	0.931	0.901	0.871	0.842	0.814	0. 786	0.759
06 0	0.15	1.282	1.251	1.220	1.190	1.160	1.130	1.101	1.072	1.044	1.016	0.988 (.961 (), 934 (0. 907	0.880	0.854	0.828	0. 803	0.777	0.752	0.727
0. 20	0.20	1.210	1. 183	1.156	1. 129	1, 102	1.076	1. 050	1.024	0.999	0.973	0.948 (). 923 (, 898 (0.874	0.849	0.825	0.801	0.778	0.754	0.731	0.707
	0.25	1.165	1.139	1. 115	1.090	1.065	1.041	1.017	0.993	0.969	0.945	0.922 (. 898 (). 875 (0.852	0.829	0.806	0.783	0.761	0. 738	0.716	0.694
	0.30	1.133	1.110	1.086	1.063	1.040	1.017	0.994	0.971	0.948	0.925	0.903 (). 880 (). 858 (0.836	0.814	0.792	0.770	0.748	0.727	0.705	0.684
	0.05	1.906	1.825	1.750	1.678	1.610	1.546	1.485	1.426	1.370	0.317	1. 266	1.217	. 169	1.124	1.080	1.038	0. 997	0.957	0.919	0.882	0.846
	0.10	1.524	1.478	1.433	1.389	1.346	1.305	1.264	1.224	1. 186	1. 148	1.112	I. 076 I	. 041	1.006	0.973	0.940	0.908	0.876	0.845	0.815	0. 785
0.25	0.15	1.362	1.326	1.291	1.257	1.223	1.190	1. 157	1. 125	1.093	1.062	1.032	1.002 (). 972 (0.943	0.914	0.885	0.857	0.830	0.803	0.776	0.749
	0.20	1.271	1.240	1.210	1. 181	1. 151	1.122	1.094	1.066	1.038	1.010	0.983 (), 956 (), 929 (0. 903	0.877	0.851	0.825	0.800	0.775	0.750	0.726
	0.25	1.213	1. 185	1.158	1.131	1. 105	1.078	1.052	1. 026	1.001	0.975	0.950 (), 925 (, 900 (0.875	0.851	0.827	0.803	0.779	0. 755	0.732	0.709
	0.10	1.634	1.580	1.527	1.476	1.427	1. 380	1, 334	1, 289	1.246	1.204	1. 163	1.124	. 085	1.047	1.011	0.975	0.940	0.906	0.873	0.840	0.809
0.30	0.15	1.439	1.399	1. 359	1.321	1.283	1.246	1.210	1.174	1.140	1.106	1.072	1.039	1.007 (0.975	0.944	0.914	0.884	0.854	0.825	0.797	0. 769
	0.20	1.329	1.296	1.263	1.230	1.198	1.166	1.135	1.105	1.074	1.045	1.015 (. 986 (. 958 (0.929	0.902	0.874	0.847	0.820	0.794	0. 768	0.742
36 0	0.10	1.739	1.676	1.616	1.558	1.502	1.449	1. 397	1. 348	1.300	1.254	1.209	l. 166	. 124	1.083	1.044	1.005	0.968	0.932	0. 897	0.862	0. 829
ce .0	0.15	1.512	1.467	1.423	1.380	1.338	1.297	1. 258	1.219	1. 181	1.144	1.108	1.073	. 038	1.004	0.971	0.939	0.907	0.876	0.845	0.815	0. 786

GB/T 19624-2004

表 D.6 椭圆埋藏裂纹的 f^k

	0 0.95 1.00	09 0.593 0.576	42 0.527 0.512	74 0.461 0.448	06 0.395 0.384	38 0.329 0.320	71 0.263 0.256	0.198 0.192	35 0.132 0.128	58 0.066 0.064	000 0.000 0.000	35 0.616 0.597	39 0.524 0.509	52 0.449 0.437	89 0.379 0.369	19 0.311 0.303	50 0.243 0.237	81 0.177 0.172	13 0.110 0.108	44 0.044 0.043	57 0.636 0.615	43 0.527 0.512	55 0.443 0.430	76 0.367 0.357	02 0.295 0.287	30 0.225 0.220	50 0.156 0.153
	0.85 0.9	0.626 0.60	0.556 0.5	0.487 0.4	0.417 0.40	0.348 0.3:	0.278 0.23	0.209 0.20	0.139 0.13	0.070 0.06	0.000 0.00	0.654 0.6:	0.554 0.5;	0.474 0.46	0.400 0.38	0.327 0.3	0.256 0.29	0.185 0.18	0.115 0.1	0.045 0.0	0.678 0.6	0.558 0.54	0.467 0.49	0.386 0.3	0.310 0.30	0.236 0.2	0 162 0 10
	75 0.80	559 0.643	386 0.571	513 0.500	140 0.428	366 0.357	293 0.286	220 0.214	146 0.143	073 0.071	000 0.000	392 0. 673	84 0.569	199 0.487	120 0.410	344 0.336	269 0.262	94 0.190	20 0.118)46 0.046	721 0.699	590 0.574	192 0.479	105 0.396	324 0.317	246 0.241	50 0 15C
	0.70 0.	0.676 0.6	0.601 0.5	0.526 0.5	0.451 0.4	0.375 0.3	0.300 0.2	0.225 0.2	0.150 0.1	0.075 0.0	0.000 0.0	0.712 0.6	0.599 0.5	0.512 0.4	0.430 0.4	0.352 0.3	0.275 0.2	0.198 0.1	0.122 0.1	0.047 0.0	0.743 0.7	0.605 0.5	0.504 0.4	0.415 0.4	0.332 0.3	0.251 0.2	0 001 0
	0.65	9 0.693	0 0.616	2 0.539	3 0.462	4 0.385	5 0.308	6 0.231	8 0.154	9 0.077	0 0.000	1 0.731	0 0.615	6 0.524	1 0.441	8 0.360	7 0.281	7 0.203	7 0.125	8 0.047	8 0.766	7 0.621	8 0.516	4 0.424	6 0.339	1 0.256	00100
	0.55 0.60	. 726 0. 70	.645 0.63	. 565 0. 55	0.484 0.47	.403 0.39	. 323 0. 31	. 242 0. 23	. 161 0. 15	0.081 0.07	000 0.00	770 0.75	.645 0.63	. 549 0. 53	.461 0.45	.376 0.36	. 293 0. 28	.211 0.20	. 130 0. 12	0.048 0.04	. 811 0.78	. 653 0. 63	. 541 0. 52	.443 0.43	.353 0.34	. 266 0. 26	100 0 1 1
a/c	0.50 (0.742 0	0.660 0	0.577 0	0.495 0	0.412 0	0.330 0	0.247 0	0.165 0	0.082 0	0,000 0	0.790 0	0.660 0	0.561 0	0.471 0	0.385 0	0.300 0	0.215 0	0.132 0	0.049 0	0.834 0	0.669 0	0.553 0	0.453 0	0.360 0	0.271 0	0 101 0
	40 0.45	76 0.759	90 0.675	03 0.590	17 0.506	31 0.422	45 0.337	59 0.253	72 0.169	86 0.084	000 0.000	30 0.810	90 0.675	86 0.574	91 0.481	01 0.393	12 0.306	24 0.220	36 0.134	149 0.049	82 0.858	01 0.685	377 0.565	72 0.462	174 0.367	81 0.276	00 0 107
	0.35 0.	0.792 0.7	0.704 0.6	0.616 0.6	0.528 0.5	0.440 0.4	0.352 0.3	0.264 0.2	0.176 0.1	0.088 0.0	0.000 0.0	0.851 0.8	0.705 0.6	0.598 0.5	0.502 0.4	0.409 0.4	0.318 0.3	0.228 0.2	0.139 0.1	0.050 0.0	0.906 0.8	0.717 0.3	0.589 0.5	0.481 0.4	0.381 0.3	0.286 0.2	
	0.30	5 0.809	4 0.719	2 0.629	1 0.539	9 0.449	7 0.360	5 0.270	3 0.180	2 0.090	0.000	2 0.871	5 0.721	3 0.611	2 0.512	5 0.417	0.324	5 0.232	3 0.141	0.050	5 0.931	0.734	4 0.602	0.490	5 0.388	5 0.290	
	. 20 0. 25	842 0.82	749 0.73	655 0.64	562 0.55	468 0.45	374 0.36	281 0.27	187 0.18	094 0.09	000 0.000	912 0.89	751 0.73	635 0.62	532 0.52	433 0.42	336 0.33	240 0.23	145 0.14	050 0.05	981 0.95	766 0.75	626 0.61	509 0. 50	402 0, 39	300 0. 29	010
	0.15 0.	0.859 0.	0.764 0.	0.668 0.	0.573 0.	0.477 0.	0.382 0.	0.286 0.	0.191 0.	0.095 0.	0.000 0.	0.933 0.	0.766 0.	0.648 0.	0.542 0.	0.441 0.	0.342 0.	0.244 0.	0.147 0.	0.051 0.	1.007 0.	0.783 0.	0.638 0.	0.518 0.	0.408 0.	0.304 0.	0 000 0
	5 0.10	0.876	0.778	14 0.681	15 0.584	16 0.486	17 0.389	7 0.292	8 0.195	19 0.097	0 0.000	5 0.954	17 0.782	2 0.660	12 0.552	6 0.448	3 0.348	52 0.248	1 0.149	1 0. 051	30 1.033	6 0, 799	32 0.650	36 0.527	2 0.415	3 0, 309	17 0 90E
	.00 0.01	909 0.89	808 0.79	707 0.69	606 0.59	505 0.49	404 0.39	303 0.29	202 0.19	101 0.09	000 0.00	997 0.97	812 0.79	685 0.67	572 0.56	464 0.45	359 0.35	256 0.25	153 0.15	051 0.05	087 1.06	833 0.81	675 0.66	545 0.53	428 0.42	317 0.31	910 0 90
p_1	B 0.	0.05 0.	0.10 0.	0.15 0.	0.20 0.	0.25 0.	0.30 0.	0.35 0.	0.40 0.	0.45 0.	0.50 0.	0.05 0.	0.10 0.	0.15 0.	0.20 0.	0.25 0.	0.30 0.	0.35 0.	0.40 0.	0.45 0.	0.05 1.	0.10 0.	0.15 0.	0.20 0.	0.25 0.	0.30 0.	0 36 0
a	B					C))									0.05								10			

(续)
9
Ū.
表

00	623	511	423	345	272	202	134	625	507	413	331	255	183	622	499	401	316	237	487	386	298	471	368
5 1.	5 0.	7 0.	5 0.	4 0.	80.	6 0.	6 0.	8 0.	2 0.	20	.0 6	1 0.	17 0.	4 0.	4 0.	2 0.	3 0.	2 0.	2 0.	6 0.	5 0.	5 0.	7 0.
0.9	0.64	0.52	0.43	0.35	0.27	0.20	0.13	0.64	0.52	0.42	0.33	0.26	0. 18	0.64	0.51	0.41	0.32	0.24	0.50	0.39	0.30	0.48	0.37
0.90	0.668	0.543	0.447	0.363	0.285	0.211	0.138	0.671	0.538	0.436	0.348	0.267	0.190	0.668	0.530	0.423	0. 330	0.247	0.517	0.406	0.311	0.499	0.386
0.85	0.690	0.559	0.459	0.372	0. 292	0.215	0.140	0.694	0.554	0.448	0.356	0.272	0.193	0.691	0.545	0.433	0.338	0.251	0. 532	0.416	0.317	0.514	0. 395
0.80	0. 713	0.575	0.471	0.381	0.298	0.219	0.142	0.718	0.570	0.459	0.364	0.278	0.196	0.716	0.561	0.444	0.345	0. 255	0.547	0.426	0.323	0.528	0.404
0. 75	0. 737	0. 591	0.483	0.390	0.304	0. 223	0.144	0.743	0.586	0.471	0.372	0. 283	0. 199	0.741	0.577	0.455	0.352	0.259	0.562	0.435	0. 329	0.542	0.412
0.70	0.761	0.607	0.495	0.399	0.311	0.227	0.146	0. 768	0.603	0.482	0.380	0.288	0.202	0.766	0. 593	0.466	0.359	0. 263	0.578	0.445	0. 335	0.557	0.421
0.65	0. 785	0.623	0.507	0.407	0.317	0. 231	0.148	0.794	0.619	0.493	0.388	0.293	0.204	0. 793	0.609	0.476	0.366	0.267	0. 593	0.455	0.340	0.571	0.429
0.60	0.810	0.640	0.518	0.416	0.323	0. 235	0.149	0.820	0. 636	0. 505	0.396	0.298	0.207	0.820	0.625	0.487	0. 373	0.271	0. 609	0.464	0.346	0. 586	0.438
0.55	0. 835	0.656	0.530	0.425	0.329	0. 238	0. 151	0.847	0.652	0.516	0.404	0.303	0.209	0.848	0.642	0.498	0.379	0.274	0.625	0.474	0.351	0.601	0.446
0.50	0.861	0.673	0.542	0.434	0.335	0.242	0.152	0.874	0.669	0.528	0.411	0.308	0.211	0. 877	0.659	0. 508	0. 386	0. 278	0.641	0.484	0.356	0.616	0.454
0.45	0.887	0.689	0.554	0.442	0.341	0.246	0.154	0. 903	0.686	0.539	0.419	0.312	0.213	0. 906	0.676	0.519	0.392	0. 281	0.657	0.493	0.361	0.631	0.462
0.40	0.914	0.706	0.566	0.451	0.347	0.249	0.155	0.932	0.703	0.550	0.427	0.317	0.215	0. 937	0. 693	0.529	0.398	0.284	0.674	0.502	0.366	0.647	0.470
0.35	0.942	0. 723	0. 578	0.459	0.353	0. 252	0.156	0. 962	0.721	0.562	0.434	0. 321	0.217	0. 969	0.710	0.540	0.405	0. 287	0.691	0.512	0.371	0.663	0.477
0. 30	0.970	0.740	0.590	0.468	0.358	0.256	0.157	0. 993	0. 738	0.573	0.441	0.326	0.219	1.003	0.727	0.550	0.411	0.290	0. 708	0.521	0.375	0.679	0.485
0. 25	0, 999	0. 757	0.602	0.476	0.364	0. 259	0.158	1. 025	0. 756	0.584	0.449	0.330	0.221	1.038	0.745	0.561	0.417	0.292	0. 725	0.530	0.380	0.695	0.493
0.20	1.029	0. 775	0.614	0.484	0.369	0.262	0.159	1. 059	0.774	0.596	0.456	0.334	0.222	1.074	0. 763	0.571	0.423	0. 295	0.743	0.539	0.384	0.712	0.500
0.15	1. 059	0. 792	0.626	0.493	0.375	0.265	0.160	1.093	0.792	0.607	0.463	0.338	0.223	1.112	0.782	0. 582	0.428	0.297	0.761	0.548	0.388	0. 729	0.508
0.10	1.090	0.810	0.637	0.501	0.380	0.268	0.161	1.129	0.810	0.618	0.470	0.342	0. 225	1.152	0.800	0. 592	0.434	0.299	0.779	0.558	0.392	0, 746	0.515
0.05	1. 122	0.827	0.649	0.509	0.386	0.271	0.161	1.166	0, 829	0.630	0.477	0.346	0.226	1.194	0.819	0.602	0.439	0.301	0.798	0.567	0.395	0.764	0.522
0.00	1.155	0.845	0.661	0.517	0.391	0.274	0.162	1. 205	0.848	0.641	0.484	0.349	0.227	1. 239	0.838	0.613	0.445	0.303	0.817	0.576	0.399	0.783	0.529
<u>m</u>	0.05	0.10	0. 15	0.20	0. 25	0.30	0.35	0.05	0.10	0.15	0.20	0. 25	0.30	0.05	0.10	0.15	0.20	0. 25	0.10	0.15	0.20	0.10	0.15
ß				0.15						 6	07.0					0.25				0.30			
	B 0.00 0.05 0.10 0.15 0.25 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.95 1.00	B 0.00 0.05 0.10 0.15 0.25 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.95 1.00 0.05 1.155 1.122 1.090 1.029 0.942 0.914 0.861 0.835 0.810 0.785 0.713 0.690 0.645 0.645 0.625	B 0.00 0.05 0.10 0.15 0.25 0.35 0.45 0.55 0.56 0.55 0.67 0.76 0.75 0.85 0.90 0.95 1.00 0.05 1.155 1.122 1.090 1.029 0.999 0.970 0.942 0.914 0.887 0.861 0.835 0.810 0.785 0.713 0.690 0.668 0.645 0.625 0.623 0.607 0.591 0.559 0.527 0.511 0.10 0.845 0.845 0.673 0.656 0.640 0.623 0.607 0.591 0.559 0.527 0.511	$ \overline{B} \overline{B} 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 \\ 0.05 1.155 1.122 1.090 1.059 1.029 0.999 0.970 0.942 0.914 0.887 0.861 0.835 0.810 0.785 0.761 0.737 0.713 0.690 0.668 0.645 0.621 \\ 0.10 0.845 0.827 0.810 0.792 0.775 0.775 0.740 0.723 0.706 0.689 0.673 0.656 0.640 0.623 0.607 0.591 0.575 0.559 0.543 0.527 0.511 \\ 0.15 0.661 0.649 0.637 0.626 0.518 0.576 0.548 0.554 0.554 0.554 0.530 0.518 0.507 0.495 0.471 0.459 0.447 0.435 0.425 0.425 \\ 0.447 0.435 0.425 0.547 0.435 0.547 0.459 0.547 0.455 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.554 0.554 0.554 0.554 0.554 0.548 0.575 0.575 0.575 0.579 0.548 0.547 0.455 0.548 0.575 0.559 0.547 0.455 0.548 0.575 0.559 0.547 0.455 0.548 0.57 0.495 0.483 0.471 0.459 0.447 0.435 0.425 0.425 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 0.561 $	$ \overline{B} \overline{B} 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.05 1.155 1.122 1.090 1.059 1.029 0.999 0.970 0.942 0.914 0.887 0.861 0.835 0.810 0.785 0.761 0.737 0.713 0.690 0.668 0.645 0.625 0.501 0.785 0.761 0.737 0.713 0.559 0.543 0.527 0.511 0.16 0.845 0.649 0.623 0.607 0.591 0.575 0.559 0.543 0.527 0.511 0.15 0.15 0.641 0.649 0.623 0.614 0.623 0.554 0.547 0.742 0.425 0.544 0.425 0.518 0.507 0.495 0.471 0.459 0.447 0.435 0.445 0.435 0.441 0.435 0.441 0.459 0.447 0.435 0.441 0.459 0.341 0.459 0.341 0.399 0.391 0.371 0.363 0.364 0.354 0.341 0.354 0.341 0.354 0.341 0.354 0.354 0.341 0.354 0.354 0.341 0.354 0.354 0.354 0.354 0.354 0.341 0.354 0.354 0.341 0.355 0.366 0.364 0.366 0.364 0.366 0.361 0.407 0.399 0.391 0.372 0.363 0.354 0.341 0.354 0.341 0.354 0.354 0.341 0.354 0.354 0.354 0.341 0.354 0.354 0.341 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.354 0.341 0.356 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 $	$ \overline{B} \overline{B} 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.61 0.737 0.713 0.690 0.668 0.645 0.623 0.61 0.737 0.713 0.690 0.668 0.645 0.621 0.731 0.713 0.713 0.690 0.668 0.645 0.621 0.731 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.723 0.723 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.72$	$ \overline{H} [B 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.65 0.645 0.635 0.610 0.75 0.713 0.690 0.668 0.645 0.623 0.611 0.737 0.713 0.690 0.668 0.645 0.631 0.731 0.731 0.713 0.690 0.668 0.645 0.631 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.731 0.741 0.435 0.441 0.435 0.441 0.431 0.431 0.741 0.450 0.441 0.435 0.441 0.431 0.441 0.442 0.441 0.442 0.441 0.447 0.339 0.330 0.331 0.372 0.363 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.341 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.24$	$ \overline{F} \overline{F} 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.761 0.737 0.713 0.690 0.668 0.645 0.651 0.521 0.511 0.737 0.713 0.690 0.668 0.645 0.651 0.511 0.575 0.501 0.575 0.559 0.543 0.511 0.511 0.511 0.575 0.559 0.543 0.527 0.511 0.511 0.511 0.575 0.559 0.543 0.527 0.511 0.511 0.511 0.575 0.559 0.543 0.545 0.541 0.511 0.575 0.559 0.543 0.545 0.541 0.511 0.511 0.575 0.559 0.543 0.543 0.541 0.511 0.517 0.591 0.575 0.559 0.543 0.541 0.511 0.511 0.509 0.578 0.554 0.542 0.544 0.542 0.530 0.518 0.507 0.493 0.471 0.459 0.447 0.435 0.341 0.341 0.512 0.399 0.381 0.372 0.363 0.354 0.341 0.311 0.304 0.381 0.372 0.363 0.354 0.341 0.311 0.304 0.329 0.381 0.372 0.363 0.354 0.371 0.311 0.304 0.236 0.525 0.249 0.271 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.2$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B 0.00 0.05 0.10 0.15 0.20 0.35 0.40 0.45 0.55 0.66 0.65 0.73 0.713 0.680 0.685 0.645 0.551 0.05 1.155 1.122 1.090 1.059 1.029 0.999 0.975 0.942 0.914 0.887 0.861 0.855 0.761 0.737 0.713 0.699 0.543 0.511 0.10 0.845 0.827 0.810 0.756 0.599 0.975 0.566 0.544 0.544 0.575 0.599 0.573 0.354 0.518 0.507 0.493 0.417 0.435 0.417 0.425 0.566 0.544 0.544 0.435 0.417 0.435 0.417 0.435 0.417 0.435 0.417 0.435 0.417 0.435 0.513 0.513 0.513 0.513 0.513 0.513 0.513 0.524 0.544 0.537 0.713 0.435 0.415 0.415 0.415 0.	\overline{H} 0.00 0.05 0.10 0.15 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.50 0.55 0.50 0.55 0.50 0.55 0.50 0.55 0.55 0.565 0.565 0.575 0.575 0.555 0.547 0.575 0.555 0.547 0.575 0.555 0.547 0.517 0.555 0.545 0.556 0.554 0.554 0.557 0.518 0.507 0.495 0.447 0.455 0.517 0.477 0.455 0.455 0.545 0.554 0.554 0.554 0.518 0.507 0.495 0.447 0.455 0.416 0.455 0.455 0.456 0.554 0.554 0.518 0.507 0.417 0.455 0.417 0.455 0.417 0.455 0.417 0.455 0.417 0.455 0.416 0.455 0.416 0.416 0.417 0.435 0.416 0.416 0.4147 0.435 0.215 0.215 0.215	$ \overline{H} \overline{H} 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.73 0.73 0.73 0.73 0.73 0.690 0.668 0.65 0.61 0.73 0.71 0.690 0.668 0.645 0.65 0.61 0.73 0.71 0.75 0.59 0.543 0.51 0.71 0.75 0.51 0.73 0.71 0.690 0.668 0.645 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61$	$ \frac{\mathbf{F}}{\mathbf{F}} \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	\overline{B} 0.00 0.05 0.10 0.15 0.20 0.25 0.40 0.55 0.40 0.55 0.66 0.65 0.735 0.713 0.660 0.665 0.655 0.555 0.511 0.575 0.513 0.505 0.545 0.555 0.545 0.555 0.545 0.555 0.545 0.555 0.545 0.555 0.555 0.545 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555	B 0.00 0.05 0.10 0.15 0.26 0.35 0.40 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.	B 0:00 0:05 0:10 0:15 0:26 0:45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.	B 0.00 0.05 0.10 0.15 0.27 0.291 0.285 0.591 0.785 0.771 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.745 0.757 0.511 0.05 1.155 1.125 1.760 1.757 0.757 0.757 0.757 0.513 0.566 0.440 0.785 0.713 0.441 0.445 0.527 0.511 0.16 0.845 0.557 0.556 0.546 0.545 0.540 0.581 0.501 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391	H 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.	H 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.	H 0.00 0.05 0.10 0.15 0.25 0.30 0.35 0.40 0.55 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.

表 D.7 椭圆埋藏裂纹的 f^a

-im							narrana (aranganan)				a/c										
°	8	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
-	. 016	0 0.991	0.973	0.954	0.936	0.918	0.899	0.881	0.862	0.843	0.825 (0.806 (). 788 (), 769 (. 751 (). 732 (0.714	0.695	0.677	0.659	0. 640
	1.01(0 0.991	0.973	0.954	0.936	0.918	0.899	0.881	0.862	0.843	0.825 (J. 806 (). 788 (), 769 (. 751 (). 732 (0.714	0.695	0.677	0.659	0.640
	1.010	0 0.991	0.973	0.954	0.936	0.918	0.899	0.881	0.862	0.843	0.825 (0.806 (). 788 (). 769 (. 751 0). 732 (0.714	0, 695	0.677	0.659	0.640
	1.010	0.991	0.973	0.954	0.936	0.918	0.899	0, 881	0.862	0.843	0.825 (o. 806 (). 788 (). 769 (. 751 0). 732 (0.714	0.695	0.677	0.659	0.640
	1.010	0 0.991	0.973	0.954	0.936	0.918	0.899	0.881	0.862	0.843	0.825 (0.806 (). 788 (), 769 (. 751 0). 732 (0.714	0.695	0.677	0.659	0.640
	1.010	0.991	0.973	0.954	0.936	0.918	0.899	0.881	0.862	0.843	0.825 (o. 806 (). 788 (), 769 (. 751 0). 732 (0.714	0.695	0.677	0.659	0.640
	1.010	0.991	0.973	0.954	0.936	0.918	0.899	0.881	0.862	0.843	0.825 (J. 806 (). 788 (), 769 (, 751 (), 732 (0.714	0.695	0.677	0.659	0. 640
	1.010	0.991	0, 973	0.954	0.936	0.918	0.899	0.881	0.862	0.843	0.825 (0.806 (). 788 (), 769 (. 751 0), 732 (0.714	0.695	0.677	0.659	0.640
	1.010	0.991	0.973	0,954	0.936	0, 918	0.899	0.881	0.862	0.843	0.825 (o. 806 (). 788 (), 769 (. 751 0). 732 (0.714	0. 695	0.677	0.659	0.640
	1.010	0.991	0.973	0.954	0.936	0.918	0.899	0.881	0.862	0.843	0.825 (J. 806 (), 788 (), 769 (. 751 0). 732 (0.714	0.695	0.677	0.659	0.640
	1.087	7 1.064	1.040	1.017	0.994	0.971	0.948	0.925	0.903	0.880	0.858 (3. 836 (). 814 (), 793 (. 771 0). 750 (0.728	0.707	0.686	0.665	0.645
	1.048	8 1.027	1.006	0.985	0.965	0.944	0.924	0,903	0.883	0.863	0.842 (0.822 (). 802 (). 782 (.762 (). 742 (0.722	0.703	0.683	0.663	0.644
	1.034	4 1.014	0.994	0.974	0.954	0.935	0.915	0.895	0.876	0.856	0.836 (0.817 (). 797 (), 778 (. 759 (). 739 (0.720	0.701	0.681	0.662	0.643
	1.027	7 1.007	0.988	0.968	0.949	0.930	0.910	0.891	0.872	0.853	0.833 (0.814 (). 795 (), 776 (. 757 (). 738 (0.719	0.700	0.681	0.662	0.643
	1.02:	3 1.004	0.984	0.965	0.946	0.927	0.908	0.889	0.870	0.851	0.832 (0.813 (). 794 (), 775 (. 756 (). 737 (0.718	0.699	0.680	0.661	0.642
-	1. 02(0 1.001	0.982	0.963	0.944	0.925	0.906	0.888	0.869	0.850	0.831 (0.812 (). 793 (), 774 (. 755 (). 736 (0.718	0.699	0.680	0.661	0.642
	1.015	9 1.000	0.981	0.962	0.943	0.924	0.906	0.887	0.868	0.849	0.830 (0.811 (). 792 (), 774 (. 755 (). 736 (0.717	0.699	0.680	0.661	0.642
_	1.015	8 0.999	0.980	0.961	0.943	0.924	0.905	0.886	0.867	0.849	0.830 (0.811 (0.792 (0.773 (. 755 (). 736 (0.717	0.699	0.680	0.661	0.642
	1.015	9 1.000	0.981	0.962	0.943	0.925	0.906	0.887	0.868	0.849	0.831 (0.812 (), 793 (). 774 (. 756 (), 737 (0.718	0.699	0.681	0.662	0.643
	1.162	2 1.133	1.105	1.077	1.049	1.022	0.995	0.968	0.942	0.916	0.891 (0.866 (). 841 (0.816 (. 792 (). 768 (0.744	0.721	0.698	0.675	0.653
	1.095	9 1.075	1.051	1.028	1.004	0.981	0.958	0.935	0.912	0.889	0.867 (0.845 (). 823 (). 801 (, 779 (). 757 (0. 735	0.714	0.693	0.672	0.651
	1.072	2 1.050	1.028	1.006	0.984	0.962	0.941	0.919	0.898	0.877	0.856 (0.835 (0.814 (). 793 (. 772 (), 751 (0.731	0.710	0.690	0.670	0.650
	1. 05?	7 1.036	1.015	0.994	0.973	0.952	0.931	0.911	0.890	0.870	0.849 (0.829 (). 809 (). 789 (. 768 (), 748 (0.728	0.708	0.688	0.669	0.649
	1.048	8 1.027	1.007	0.987	0.966	0.946	0.926	0.906	0.886	0.866	0.846 (0.826 (). 806 (). 786 (, 766 (). 746 (0.727	0.707	0.687	0.668	0.648
-	1.042	2 1.022	1.002	0.982	0.962	0.942	0.922	0.902	0.883	0.863	0.843 (0.824 (). 804 (). 784 (. 765 (). 745 (0.726	0.706	0.687	0.668	0.648
	1.03	9 1.019	0.999	0.979	0,960	0.940	0.920	0.901	0.881	0.862	0.842 (0.823 (0.803 (). 784 (. 764 (0.745 (0.726	0.706	0.687	0.668	0.648
	1.041	1 1.022	1.002	0.982	0.963	0.943	0.923	0.904	0.884	0.865	0.845 (0.826 (0.806 (). 787 (. 768 C). 748 (0.729	0.710	0.690	0.671	0.652

GB/T 19624-2004

<i>a</i>	ⁱ d											a/c										
В	В	0. 00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0, 75	0.80	0.85	0.90	0.95	1.00
	0.05	1.226	1.192	1.160	1.128	1.096	1.065	1.035	1.005	0.976	0.948	0.920	0.892	0.865	0.838	0.812	0. 786	0. 761	0. 736	0.711	0.687	. 663
	0.10	1.151	1.124	1.097	1.071	1.044	1.018	0.993	0.967	0.942	0.917	0.893	0.868	0.844.	0.820	0.797	0.773	0.750	0.728	0. 705	0.682	0.660
	0.15	1.114	1.090	1.066	1.042	1.018	0.994	0.970	0.947	0.924	0.901	0.878	0.855	0.833	0.811	0. 788	0.766	0.745	0.723	0.701	0.680	. 659
0.15	0.20	1, 093	1.070	1.047	1.025	1.002	0.980	0.957	0.935	0.913	0.891	0.869	0.848	0.826	0.805	0. 783	0.762	0.741	0.720	0. 699	0.678	. 658
	0.25	1.080	1, 058	1. 036	1.014	0, 993	0,971	0.949	0.928	0.907	0.885	0.864	0.843	0.822	0.801	0. 780	0. 760	0.739	0.718	0.698	0.678	. 657
	0.30	1.072	1.051	1.030	1.008	0.987	0.966	0.945	0.924	0, 903	0, 882	0.862	0.841	0.820	0.800	0.779	0.759	0. 739	0.718	0.698	0, 678	. 658
	0.35	1.078	1.057	1.036	1.015	0.994	0.973	0.952	0.931	0.910	0.889	0.869	0.848	0.828	0.807	0. 787	0.766	0.746	0.725	0.705	0.685	. 665
	0.05	1. 287	1.249	1.213	1.177	1.142	1.108	1.075	1.042	1.010	0.979	0.949	0.919	0.890	0.861	0.833	0.805	0.778	0.752	0.726	0.700	0.675
	0.10	1.206	1.175	1.145	1.115	1.086	1.057	1.029	1.001	0.974	0.947	0.920	0.894	0.868	0.842	0.817	0.792	0.767	0.743	0.719	0. 696	. 672
	0.15	1.162	1.135	1.108	1.081	1.055	1.029	1.004	0.978	0.953	0.928	0.904	0.879	0.855	0.831	0, 808	0.784	0.761	0. 738	0.715	0. 693 (0. 670
n. 40	0.20	1.136	1. 111	1.086	1.061	1.037	1.013	0.989	0, 965	0.941	0.917	0.894	0.871	0.848	0.825	0.802	0.780	0. 758	0. 735	0.713	0.692	0. 670
	0.25	1. 121	1.098	1.074	1.050	1.027	1.004	0.980	0,957	0.935	0.912	0.889	0.867	0.845	0.822	0.800	0.778	0.757	0. 735	0.713	0.692	. 671
	0.30	1.133	1.109	1.086	1.062	1.039	1.016	0.993	0.970	0.948	0.925	0.902	0.880	0.858	0.836	0.814	0.792	0.770	0.748	0.726	0.705	. 684
	0.05	1.352	1.310	1.269	1.230	1.191	1.154	1.117	1.082	1.047	1.013	0.980	0.948	0.917	0.886	0.856	0.827	0. 798	0. 770	0.743	0.716	0.690
	0.10	1.265	1.231	1.198	1.165	1.133	1.101	1.070	1.040	1.010	0.980	0.952	0.923	0.895	0.868	0.841	0.814	0. 788	0. 762	0.737	0.712	0. 687
0.25	0.15	1.217	1.187	1.158	1.129	1.100	1.071	1.043	1.016	0.988	0.961	0.935	0.909	0.883	0.857	0.832	0.807	0. 782	0.758	0.734	0.710	. 686
	0.20	1. 191	1.164	1.136	1.109	1.082	1.056	1.029	1, 003	0.978	0.952	0.927	0.902	0.877	0.853	0.828	0.804	0. 781	0.757	0.734	0.711	0. 688
	0.25	1.212	1.184	1. 157	1.130	1.104	1.078	1.051	1.026	1.000	0.974	0.949	0.924	0. 899	0.875	0.851	0.826	0.802	0.779	0.755	0.732	0. 708
	0.10	1.338	1.300	1.262	1. 225	1.189	1.154	1.120	1.087	1.054	1.022	0.990	0.959	0.929	0.900	0.870	0.842	0.814	0. 786	0.759	0. 733	0. 707
0.30	0.15	1.291	1.257	1.224	1.191	1.159	1.128	1.097	1.066	1.036	1.006	0.977	0.949	0.920	0.893	0.865	0.838	0.812	0. 786	0.760	0.734	0. 709
	0.20	1. 328	1.294	1.261	1.229	1.197	1.165	1.134	1.103	1.073	1.044	1.014	0.985	0.957	0.929	0.901	0.873	0.846	0.819	0.793	0. 767	0.741
2	0.10	1.442	1.397	1. 353	1.311	1.270	1.230	1.191	1. 153	1.117	1.081	1.046	1.012	0.978	0.946	0.914	0.882	0.852	0.822	0.793	0.764). 736
U. 33	0.15	1.512	1.466	1.422	1.380	1. 338	1.297	1.258	1.219	1.181	1.144	1.108	1.073	1.038	1.004	0.971	0.939	0. 907	0.876	0.845	0.815). 785

表 D.7 (续)

表 D.8 椭圆埋藏裂纹的 f

a	Ē											a/c										
В	B	0. 00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0. 50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
	0.05	0.909	0.892	0.876	0.859	0.842	0.826	0.809	0.792	0.776	0.759	0.742	0.726	0.709	0.693	0.676	0.659	0.643	0.626	0.609	0. 593	0.576
	0.10	0.808	0.793	0.778	0.764	0.749	0.734	0.719	0.704	0.690	0.675	0.660	0.645	0.630	0.616	0.601	0.586	0.571	0.556	0.542	0.527	0.512
	0.15	0.707	0.694	0.681	0.668	0.655	0.642	0.629	0.616	0.603	0.590	0.577	0.565	0. 552	0.539	0.526	0.513	0.500	0.487	0.474	0.461	0.448
	0.20	0.606	0.595	0.584	0.573	0.562	0.551	0.539	0.528	0.517	0.506	0.495	0.484	0.473	0.462	0.451	0.440	0.428	0.417	0.406	0.395	0.384
0	0.25	0.505	0.496	0.486	0.477	0.468	0.459	0.449	0.440	0.431	0.422	0.412	0.403	0.394	0.385	0.375	0.366	0.357	0.348	0. 338	0.329	0. 320
0.0	0.30	0.404	0.397	0.389	0.382	0.374	0.367	0, 360	0.352	0.345	0.337	0.330	0, 323	0.315	0.308	0.300	0.293	0.286	0.278	0.271	0.263	0. 256
	0.35	0.303	0.297	0.292	0.286	0.281	0.275	0.270	0.264	0. 255	0.253	0.247	0.242	0.236	0, 231	0.225	0.220	0.214	0.209	0.203	0.198	0. 192
	0.40	0.202	0.198	0. 195	0, 191	0.187	0.183	0. 180	0.176	0.172	0.169	0.165	0.161	0.158	0.154	0.150	0.146	0.143	0.139	0. 135	0.132	0. 128
	0.45	0.101	0, 099	0.097	0.095	0.094	0.092	0.090	0.088	0.086	0.084	0.082	0.081	0.079	0.077	0.075	0.073	0.071	0.070	0.068	0.066	0.064
	0.50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0, 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.05	0.816	0.797	0.778	0, 760	0.742	0.724	0.706	0.688	0.671	0.654	0.636	0.619	0.602	0.586	0.569	0.553	0.536	0.520	0.504	0.488	0.472
	0.10	0.681	0.667	0.652	0.638	0.624	0.610	0.596	0.582	0.568	0.554	0.540	0.527	0.513	0.500	0.486	0.473	0.460	0.447	0.433	0.420	0.407
	0.15	0.568	0.557	0.545	0.533	0.522	0.510	0.498	0.487	0.476	0.464	0.453	0.442	0.430	0.419	0.408	0.397	0.386	0.375	0.364	0.354	0. 343
	0.20	0.462	0.452	0.443	0.433	0.424	0.414	0.405	0.396	0.386	0.377	0.368	0.359	0, 350	0.341	0.332	0.323	0.314	0.305	0.296	0.287	0. 278
0.05	0.25	0.358	0.350	0.343	0.335	0.328	0.321	0.313	0.306	0.295	0.291	0.284	0.277	0.270	0.263	0.256	0.249	0.242	0.235	0.228	0.221	0. 214
	0.30	0.255	0.249	0.244	0.238	0.233	0.227	0.222	0.217	0.211	0.206	0.201	0.195	0.190	0.185	0.180	0.175	0.170	0.165	0.160	0.155	0. 150
	0.35	0.153	0.149	0.145	0.142	0.138	0.135	0.131	0.128	0.124	0.121	0.117	0.114	0.111	0.108	0.104	0.101	0,098	0.095	0.092	0.088	0. 085
	0.40	0.051	0.049	0.047	0.046	0.044	0.042	0.041	0. 039	0.037	0.036	0.034	0.033	0.032	0.030	0.029	0.027	0.026	0.025	0.024	0.022	0.021
	0.45	-0.051	-0.051	-0.051	-0.051	-0.050) -0, 05(0 0. 05	0-0.05	0 0. 04	9 0, 04	9-0.045)0. 045	-0.048	3-0.047	, -0.047	0. 046	0.046	-0.045	-0.044	-0.044	-0.043
	0.05	0.697	0.678	0.659	0.640	0.622	0.604	0.587	0.569	0.552	0.536	0.519	0.503	0.487	0.472	0.456	0.441	0.426	0.412	0. 397	0.383	0.369
	0.10	0.550	0.536	0.522	0.509	0.495	0.482	0.469	0.456	0.444	0.431	0.419	0.407	0.394	0.383	0.371	0.359	0.348	0.336	0.325	0.314	0.303
	0.15	0.429	0.418	0.408	0, 397	0.387	0.377	0.367	0.357	0.347	0.337	0.328	0.318	0.309	0.300	0.290	0.281	0.272	0.264	0.255	0.246	0. 238
010	0.20	0.317	0.309	0.301	0. 293	0.285	0.278	0.270	0.262	0.255	0.248	0.240	0, 233	0.226	0.219	0.212	0.205	0.199	0.192	0.185	0.179	0.173
~	0.25	0.210	0.204	0.198	0.192	0.187	0.181	0.176	0.170	0.165	0.160	0.155	0.150	0.145	0.140	0.135	0.130	0.126	0.121	0.116	0.112	0.108
	0.30	0.104	0.100	0.097	0.093	0.090	0.086	0.083	0.080	0.076	0.073	0.070	0.067	0.064	0.061	0.058	0.056	0.053	0.050	0.048	0.045	0.043
	0.35	0.000	-0.002	-0.003	-0.005	-0, 007	-0, 00	80.00	9 -0.01	1 -0.01	2 -0.01	3 -0.014	t —0. 015	0.016	10.013	,0, 015	1-0.019	020,020	-0.020	-0.021	-0.022	-0.022
	0.40	-0.104	-0.104	-0, 104	-0.103	-0, 103	1 - 0.10	2 - 0.10	2 - 0.10	1 - 0.10	0 - 0. 10	0-0.095	960 .0- (1-0.097	, -0, 096	: -0. 095	-0.094	0.093	-0.091	-0, 090	-0.089	-0.087

а	þı											a/c										
B	B	0.00	0.05	0.10	0.15	0.20	0. 25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0, 70	0.75	0.80	0.85	0,90	0.95	1.00
	0.05	0.552	0.534	0.516	0.499	0.482	0.466	0.450	0.435	0.419	0.405	0.390	0.376	0.363	0.349	0. 336	0.324	0.311	0.299 (0.287 (. 276	0.264
	0.10	0.403	0.391	0.378	0.367	0.355	0, 343	0.332	0.321	0.311	0.300	0.290	0.280	0.270	0.260	0.250	0.241	0.232	0.223 (0.214 (, 206	0. 197
	0.15	0.279	0.270	0.261	0.252	0.244	0.236	0.228	0.220	0.212	0.205	0, 197	0.190	0.183	0.176	0, 169	0. 162	0.156	0.149 (0.143 (. 137	0. 131
0.15	0.20	0.164	0.158	0.152	0.146	0.140	0.134	0.129	0.124	0.118	0.113	0.108	0.103	0.099	0.094	0.090	0. 085	0.081	0.077 (0.073 (. 069	0.065
	0.25	0.054	0.050	0.047	0.043	0.040	0.036	0.033	0. 030	0.027	0.024	0.021	0.019	0.016	0.014	0.011	0.009	0.007	0.005	0.003	0.001 -	-0,001
	0.30	-0, 054	0.055	-0,057	-0.058	-0,059	-0.061	-0.062	-0.063	-0,064	-0.064	-0.065	0.066	-0, 066	-0.067	-0, 067	-0, 067	0.067	- 0,067	- 0.067	- 0.067	-0.066
	0.35	-0. 162	-0. 161	-0, 161	-0.160	-0.159	-0.158	-0. 157	0.156	-0. 155	-0. 154	-0. 152	0. 151	0.149	-0.148	0, 146	-0. 144	0. 142 -	-0.140	-0.138 -	-0.136	-0.134
	0.05	0.386	0.371	0.356	0.341	0. 327	0.314	0.300	0. 288	0.276	0.264	0.252	0.241	0.231	0.220	0.210	0.201	0. 191	0.182 (0.173 (. 165	o. 157
	0.10	0.241	0.231	0.221	0.212	0.202	0.194	0. 185	0.176	0.168	0.160	0.153	0.145	0.138	0.131	0.125	0.118	0.112	0.106 (0.100	. 094	o. 089
06 0	0.15	0.116	0.110	0.103	0, 097	0.091	0.085	0.080	0.075	0.069	0.064	0, 060	0.055	0.051	0.046	0.042	0. 038	0.035	0.031 (0.028 (. 025	0, 021
0. 40	0.20	0,000	-0.004	0.007	0.011	-0.014	-0.017	-0.020	-0.023	-0.026	-0.028	0.030	0.033	-0.035	-0.036	-0.038	-0.040	-0.041	-0.043 -	- 0, 044 -	-0.045	-0.046
	0.25	-0.112	-0.113	-0.115	-0.116	-0.117	-0, 117	-0.118	10.119	-0.119	-0.119	0. 119	0.119	-0, 119	-0, 119	-0.118	-0, 118	-0.117 -	-0.116 -	-0.115 -	-0.114 -	-0.113
. –	0.30	-0.227	-0.226	-0.225	-0.223	-0.222	-0.221	-0.219) -0.217	-0.215	-0.213	-0.211	-0.209	-0.207	-0.204	-0.201	-0, 199	-0.196 -	-0.193 -	-0.190 -	-0.187 -	-0. 183
	0.05	0.203	0.191	0.180	0.169	0.158	0.149	0.139	0.130	0.121	0.113	0.105	0.098	0, 091	0.084	0.078	0.071	0.065	0.060 (0.055 (. 050	0.045
_	0.10	0.063	0.056	0.050	0.043	0.037	0.032	0.026	0.021	0.016	0.012	0.007	0, 003	-0, 001	0,005	-0, 008	-0.011	-0.014 -	-0.017 -	-0.020 -	-0.022 -	-0.024
0.25	0.15	0, 061	-0.064	0, 068	0, 071	0.074	0, 076	-0, 079)0. 081	-0, 083	-0, 085	i —0. 086	3 0, 088	0, 089	-0,090	-0, 091	-0, 092	-0, 092 -	-0,093 -	-0.093 -	- 0, 093 -	0, 093
	0.20	-0.179	-0, 179	-0.180	-0.180	-0. 181	-0. 181	-0. 181	-0.180	-0.180	-0.179	0. 178	3 -0. 177	-0.176	-0.175	-0.174	-0.172	-0.170 -	-0.168 -	-0. 166 -	-0.164 -	-0. 162
	0. 25	-0.303	-0.301	-0.299	-0.297	-0.295	-0.292	-0.290) —0. 287	-0.284	-0.281	-0.278	3-0.274	-0.271	-0.267	-0, 263	-0.259	-0.255 -	-0.251 -	-0.247 -	-0.242 -	-0, 237
	0.10	0, 134	-0, 137	-0. 139	-0. 141	-0. 143	-0.145	0. 146	;0, 147	-0.148	-0. 149	1 0. 150) —0. 150	-0. 150	-0.150	-0.149	0, 149	-0, 148 -	-0.147 -	-0. 146 -	-0.144 -	-0. 143
0.30	0. 15	0. 258	0, 258	-0.257	-0, 257	-0.256	-0.254	-0.253	10. 251	-0.249	-0.247	, —0. 245	5 -0. 243	-0.240	-0.238	-0.235	-0.232	-0.229 -	-0.225 -	-0.222 -	-0.218 -	-0.214
	0.20	-0. 398	-0.395	-0.391	-0.387	-0.383	-0.379	-0.375	6 -0.370	-0.366	-0.361	-0.356	3	-0.346	-0.340	-0.335	-0.329	-0.323 -	-0.317 -	-0.311 -	- 0, 304 -	-0.298
0.96	0.10	-0.360	-0, 358	0. 354	-0, 351	-0.348	-0.344	-0.340) —0, 336	:0. 332	-0.328	324	10. 319	-0.314	-0.310	-0, 305	-0.299	-0.294 -	0, 289 -	-0, 283 -	- 0. 277	-0.272
vv	0. 15	-0.529	-0.522	-0.515	-0.507	-0.500	-0. 493	-0.485	0.477	-0.470	0, 462	-0, 454	l —0. 446	-0.437	-0.429	-0.421	-0.412	-0.404 -	-0, 395 -	-0.386 -	- 0. 377	-0, 368

表 D.8 (续)

表 D.9 焊趾处表面裂纹的 Mim

$M_{\rm kb}$
袑
较
褧
固
表
处
湖
뻦
10
D.
表

	0. 135	1. 000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000
	0.130	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.002	1.002
	0.125	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.001	1.009	1.009
	0.120	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.008	1.017	1.017
	0.115	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.006	1.016	1.026	1.026
	0.110	1. 000	1.000	1.000	1.000	1. 000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.003	1.015	1.025	1.034	1.034
	0.105	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.012	1.023	1.034	1.043	1.043
	0.100	1.000	1.000	1.000	1.000	1, 000	1.000	1. 000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.007	1.020	1. 032	1.043	1.053	1.053
a/B	0.090	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.010	1.026	1.040	1.052	1.064	1.074	1.074
	0.080	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.010	1. 030	1.046	1.061	1.075	1.087	1.099	1,099
	0.070	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.007	1. 032	1. 052	1.071	1.087	1.101	1.115	1. 127	1.127
	0.060	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1. 030	1.057	1.079	1.099	1.117	1. 132	1.147	1.161	1.161
	0.050	1.000	1.000	1.000	1.000	1.000	1. 000	1.000	1. 000	1.000	1.000	1.020	1.058	1.088	1. 112	1.134	1. 153	1.171	1. 187	1.201	1.201
	0.040	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.052	1.093	1.126	1, 154	1.178	1.199	1.219	1.237	1, 253	1. 253
	0. 030	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.006	1.016	1.025	1.094	1.141	1.178	1.210	1.237	1.262	1.284	1. 305	1.334	1.334
	0.020	1.000	1.000	1.000	1.000	1.011	1.026	1.040	1.053	1.065	1.075	1.155	1.211	1.255	1.308	1.359	1. 404	1.444	1.480	1.513	1.513
	0.010	1.000	1.000	1.034	1.061	1.084	1.104	1.122	1.138	1.153	1.166	1.338	1.457	1.548	1.622	1.685	1, 741	1.790	1.835	1.876	1.876
Lw	B	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	>1.00

•

表 D.11 十字接头的焊根裂纹的 M_k

hw								2a/Lw							
B	0.00	0.05	0.10	0.15	0.20	0. 25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70
0.20	0.741	0.757	0.773	0. 789	0.805	0.821	0. 837	0.853	0.869	0.885	0.901	0.917	0.933	0.949	0.965
0.25	0.752	0.767	0.781	0.796	0.810	0.825	0.840	0.854	0.869	0.883	0.898	0.913	0,927	0.942	0.956
0.30	0.755	0.767	0.780	0.793	0.806	0.819	0.832	0.845	0.858	0.871	0.884	0.897	0.910	0.923	0.935
0.35	0.751	0.762	0.773	0.784	0. 796	0.807	0.818	0.829	0.840	0.851	0.862	0.874	0.885	0.896	0, 907
0.40	0.743	0.753	0.762	0.771	0.781	0.790	0.799	0.809	0.818	0.827	0.837	0.846	0.856	0.865	0.874
0.45	0. 732	0.740	0.748	0.755	0. 763	0.771	0.778	0.786	0.794	0.802	0.809	0.817	0.825	0.832	0.840
0.50	0.720	0.726	0.732	0.738	0.744	0.750	0.756	0.762	0.769	0.775	0.781	0.787	0.793	0.799	0.805
0.55	0.705	0.710	0.715	0.719	0.724	0.729	0.734	0.738	0.743	0.748	0.753	0.757	0.762	0.767	0.771
0.60	0.690	0.693	0.697	0.700	0.704	0.707	0.711	0.715	0.718	0.722	0.725	0.729	0. 732	0.736	0.739
0.65	0.674	0.677	0.679	0.681	0.684	0.686	0.689	0.691	0.694	0.696	0.699	0.701	0.704	0.706	0.709
0.70	0.658	0.660	0.661	0.663	0.664	0.666	0.667	0.669	0.670	0.672	0.674	0.675	0.677	0.678	0.680
0.75	0.642	0.643	0.643	0.644	0.645	0.646	0.647	0.647	0.648	0.649	0.650	0.651	0.651	0.652	0.653
0.80	0.626	0.626	0.626	0.626	0.626	0.627	0.627	0.627	0.627	0.627	0.627	0.628	0.628	0.628	0.628
0.85	0.610	0.609	0.609	0.609	0.608	0.608	0.608	0.607	0.607	0.606	0.606	0.606	0.605	0.605	0.605
0.90	0.594	0.593	0.592	0.592	0.591	0.590	0.589	0.588	0.588	0.587	0.586	0.585	0.584	0.584	0. 583
0.95	0.578	0.577	0.576	0.575	0.574	0.573	0.572	0.570	0.569	0.568	0.567	0.566	0.565	0.564	0.562
1.00	0.563	0.562	0.560	0.559	0.558	0.556	0.555	0.553	0.552	0.550	0.549	0.548	0.546	0.545	0.543
1.05	0.549	0.547	0.545	0.544	0.542	0.540	0.539	0.537	0.535	0.534	0.532	0.530	0.529	0.527	0.525
1.10	0.534	0.532	0.531	0.529	0.527	0.525	0.523	0.521	0.520	0.518	0.516	0.514	0.512	0.510	0.509
1.15	0.520	0.518	0.516	0.514	0.513	0.511	0.509	0.507	0.505	0.503	0.501	0.499	0.497	0.495	0.493
1.20	0.507	0.505	0.503	0.501	0.499	0.497	0.495	0.493	0.491	0.489	0.487	0.485	0.483	0.481	0.479

	1	T								*******									1	
	2.00	1.035	1. 122	1.139	1, 153	1.165	1.177	1.188	1.201	1.213	1.226	1.240	1.255	1.270	1.287	1.304	1. 322	1.340		2.00
	1.90	1.034	1.120	1. 138	1.152	l. 164	l. 176	1. 188	1.201	1.214	1. 228	1.242	1. 258	1.274	1.291	1. 309	1. 328	l. 347		1.90
	1.80	1.032	l. 119	l. 137	l. 151	l. 163	l. 176	l. 188	1.201	I. 215	1.229	l. 245	1.261	1.278	l. 296	1.315	1. 335	l. 355		1.80
	1. 70	. 031	. 117	. 135	. 150	. 162	. 175	. 188	. 202	. 216	. 231	. 247	. 264	. 283	. 302	. 322 1	. 343	. 365		1.70
	1.60	. 029	. 116 1	. 134]	. 148	. 161	. 175]	. 188	. 202]	. 218 1	. 234	. 251]	. 269 1	. 288]	. 308]	. 330]	. 352]	. 376 1		1.60
	1.50	. 027 1	.114 1	. 132 1	. 147 1	. 160 1	. 174 1	. 188 1	. 203 1	.219 1	. 237 1	. 255 1	. 274 1	. 295 1	. 317 1	. 340 1	.364 1	. 389 1		1.50
	1.40	. 025 1	. 111	. 130 1	.145 1	. 159 1	.173 1	. 189 1	. 205 1	. 222 1	. 240 1	. 260 1	. 281 1	. 304 1	. 327 1	. 352 1	. 378 1	.406 1	(0=	1.40
	. 30	. 022 1	. 109 1	. 127 1	. 143 1	. 158 1	. 173 1	. 189 1	. 207 1	. 225 1	. 245 1	. 267 1	. 290 1	. 315 1	. 341 1	. 368 1	. 396 1	. 426 1	壁处 @	1.30
	. 20	. 019 1	. 105 1	. 125 1	. 141 1	. 156 1	.173 1	. 190 1	. 209 1	. 230 1	. 252 1	. 276 1	. 302 1	. 329 1	. 358 1	. 388 1	. 420 1	. 453 1	容器内	1.20
a/c	. 10	.016 1	. 102 1	. 121 1	. 138 1	. 155 1	. 173 1	. 192 1	213 1	. 236 1	. 262 1	. 289 1	. 318 1	349 1	. 381 1	416 1	452 1	. 489 1	進的 g2(1.10
	. 00	011 1	. 097 1	. 117 1	.135 1.	. 154 1.	174 1	196 1	220 1	246 1.	275 1.	307 1.	340 1	376 1.	414 1.	453 1.	495 1.	537 1.	另角焊线	1.00
	. 90 1	917 1.	997 1.	019 1.	039 1.	059 1.	082 1.	106 1.	134 1.	163 1.	196 1.	230 1.	268 1.	307 1.	349 1.	393 1.	438 1.	485 1.	玉接管抄	0.90
	. 80 0	836 0.	912 0.	934 1.	955 1.	977 1.	001 1.	028 1.	057 1.	089 1.	124 1.	162 1.	202 1.	245 1.	290 1.	337 1.	386 1.	435 1.	受内	0.80
	. 70 0	768 0.	838 0.	860 0.	882 0.	905 0.	930 1.	958 1.	989 1.	023 1.	060 1.	100 1.	142 1.	188 1.	236 1.	285 1.	336 1.	388 1.	E D. 13	0.70
	. 60 0	709 0.	774 0.	795 0.	817 0.	840 0.	865 0.	894 0.	926 0.	962 1.	000 1.	042 1.	087 1.	134 1.	184 1.	236 1.	289 1.	344 1.	ŧĶ	0.60
	50 0	655 0.	715 0.	736 0.	756 0.	779 0.	805 0.	834 0.	867 0.	903 0.	943 1.	986 1.	032 1.	082 1.	134 1.	188 1.	243 1.	300 1.		0.50
	40 0.	602 0.	657 0.	676 0.	695 0.	718 0.	743 0.	773 0.	806 0.	843 0.	884 0.	929 0.	977 1.	028 1.	082 1.	138 1.	196 1.	255 1.		0.40
	30 0.	544 0.	593 0.	609 0.	628 0.	649 0.	675 0.	704 0.	738 0.	776 0.	818 0.	864 0.	914 0.	967 1.	023 1.	082 1.	143 1.	205 1.		0.30
	. 20 0.	469 0.	510 0.	525 0.	542 0.	562 0.	587 0.	617 0.	651 0.	690 0.	733 0.	781 0.	833 0.	890 0.	950 1.	013 1.	080 1.	149 1.		0.20
10	¹⁵ 0.	.0 OC	0.	10 0.	15 0.	30 0.	25 0.	30 0.	35 0.	40 0.	1 5 0.	50 0.	55 0.	50 0.	35 O.	70 1.	75 1.	30 1.		, 0.10
a.	B_4	0.(0.(0	0	0. ?	0.	0.	0	0.4	0.1	0.5	0.5	0.(0.6	0.	0	°.		c/R_n

1.228

1.240

1. 252

1.266

1.281

1.298

1.318

1.339

1.364

1.393

1.426

1.466

1.513

1.570

1.641

1.730

1.846

001

2.215

2.519

82

1.114

1.117 3.90

1.120 80

1.123 3.70

1.127 3.60

> 1.131 50

> > 1.135

I. 139

1.143

1.148

1.153

1.158 2.90

1.164

1.170

1.177 4.60

1.184 4.50

1, 191 2.40

> 1.199 4.30

> 1.2084.20

1.218

82

3.

3.40

3.30

20

3.

3.10

3.00

80

N.

70

2.

60

~;

50 2.

30 2. \$

> 20 3

> 2.10

 $c/R_{\rm in}$

4.00

ŝ

1.074

1.075

1.076

1.078

1.079

1.081

1.083

1.084

1.086

1.088

1.090

1.092

1.094

1.096

1.098

1.100

1.103

1.105

1.108

1.111

 g_2

4.10

 $c/R_{\rm in}$

4.40

6.00

90

5.

80

5.

70

ъ.

60 <u>с</u>.

50

5.

5.40

30 ы. С

20

ъ.

10 5.

8 5.

4.90

80

4.

4.70

â
)
壁处
Ł
腦
槡
50
>
$\mathbf{F}_{\rm c}$
5
-0000
3
뻦
角
22
dim
ЧИ С
7
H
Ł
婜
\sim
Γ.
9
表

受内压接管拐角焊缝的 $F_{\rm ch}/g_2$ (容器内壁处 $\varphi=\pi/2$) **D**. 14

表

	2.00	0.732	0.793	0.804	0.812	0.819	0.824	0.828	0.833	0.837	0.840	0.843	0.847	0.850	0.853	0.855	0.858	0.860		2.00	1.765	4,00	
	1.90	0.750	0.812	0.824	0, 833	0.839	0.844	0.849	0.854	0.858	0.861	0.865	0.868	0.872	0.875	0.878	0.880	0.883		1.90	1.792	3.90	
	1.80	0.769 (0.834 (0.846 (0.854 (0.861	0.867 (0.872 (0.876 (0.881 (0.885 (0.888 (0.892 (0.895 (0.899 (0.902 (0.905 (0.908		1.80	1 1.820	3.80	
	1.70	0.791	0.857	0.869	0.878	0.885	0.891	0. 896	0. 901	0. 906	0.910	0.914	0.918	0.922	0.925	0.929	0.932	0.935		1.70	3 1.851	3.70	
	1.60	0.814	0.882	0.895	0.904	0.911	0.917	0.923	0.928	0.933	0.938	0.942	0.946	0.950	0.954	0.958	0.962	0.965	- - - -	1.60	88.1.88	3.60	
	1.50	. 839 (, 909 (), 922 (. 932 (, 939 (.946 (), 952 (), 958 (). 963 (), 968 (), 973 (. 978 (). 982 (. 987 (. 991 (), 995 () 666 (1.50	5 1.91	3.50	
	1.40). 866 (), 939 (), 953 (), 963 (), 971 (. 978 (), 984 (), 991 (. 996 (1,002 (l. 008 (1.013 (I. 018 (l. 023 (1.028 (1.033 (1.037 ($=\pi/2$	1.40	5 1.95	3.40	
	1.30). 897 (). 972 (), 986 (), 997 (l. 006 (I.013 (l. 021 (1.027 (I. 034 (I.041	l. 047	1.053	1.060	1.066	1.071	1.077	1. 082	9壁处 9	0 1.3(8 1.99	0 3.3(
	1.20	. 930 (1, 008 (1.024 (. 035 (l. 044]	1. 053	1.061	1. 069 1	1. 077	1. 085	1, 092	1. 100	l. 107	. 115	1.122	1.128	1.134	(容器内	0 1.20	35 2.03	0 3.2	
a/c	1.10	, 968 (.050	. 066	. 078	. 089	. 098	. 108	. 117	. 127	. 136	. 146	. 155	. 164	. 174	. 182	. 190	. 198	缝的 g ₂	0 1.1	35 2.08	0 3.1	
	1.00	.011 0	. 096	. 114 1	. 127 1	. 139 1	. 151 1	. 162 1	. 174]	. 186 1	. 198	. 210	. 222	. 234]	. 246]	. 257	. 268	. 277	拐角焊:	0 1.0	90 2.13	0 3.0	
	0.90	, 966 1	. 050 1	. 070 1	. 087 1	. 102 1	. 118 1	.134 1	. 150 1	. 167 1	. 184 1	. 201	. 219 1	. 237 1	. 254]	. 270]	. 286 1	. 300 1	压接管	80 0.9	49 2.19	80 2.9	
	0.80	. 935 0	.019 1	.041 1	.060 1	.078 1	. 097	. 117 1	. 138 1	. 159 1	. 181	. 203 1	. 226 1	. 249 1	. 272 1	. 293 1	.314 1	. 333 1	敗	70 0.8	13 2.2	70 2.8	
	0.70 (.918 0	. 001	. 025 1	.046 1	. 068 1	. 090	. 113 1	. 138 1	.163 1	. 190 1	. 218 1	. 246 1	. 274 1	. 302 1	. 329]	.355 1	. 379 1	€ D. 15	30 0.7	83 2.3	30 2.7	
). 60 (. 915 0	. 999	. 024 1	.047 1	. 070 1	. 096	. 122 1	. 151 1	. 181	. 213 1	. 246]	. 280 1	. 314 1	. 347 1	. 380 1	.412 1	.441 1	чŢ	50 0.	60 2.3	50 2. (
	. 50 (. 926 0	.011 0	.037 1	.062 1	. 088 1	. 116 1	. 147 1	. 180 1	. 215 1	. 253 1	. 292 1	. 332 1	. 373 1	.413 1	. 453 1	. 491 1	. 527 1		40 0.	644 2.4	40 2.	
	.40 (. 952 0	. 038 1	. 065 1	. 092 1	. 120 1	. 153 1	. 188 1	. 227 1	. 269 1	. 313 1	. 360 1	. 409 1	. 458 1	. 508 1	. 557 1	. 604 1	. 648 1		30 0.	336 2.5	30 2.	
	. 30 0	. 993 0.	. 081 1.	109 1.	138 1.	. 171 1.	208 1.	. 250 1.	. 297 1.	. 348 1.	403 1.	.461 1.	522 1.	584 1	. 647 1.	709 1.	. 770 1.	. 827 1		20 0.	738 2.6	20 2.	
	0. 20 0	.048 0.	.140 1.	.169 1.	. 202 1.	.242 1.	. 288 1.	.341 1.	.401 1.	.468 1.	.541 1.	.618 1.	. 700 1.	. 785 1.	. 872 1.	.961 1.	.048 1.	. 134 1		10 0.	850 2.1	10 2.	
a45	B45 (. 00 1	. 05 1	. 10	. 15 1	. 20 1	. 25 1	. 30 1	. 35 1	.40 1	. 45 1	. 50 1	. 55 1	. 60 1	. 65 1	. 70 1	. 75 2	. 80 2		$R_m = 0.$	g ₂ 2.	R _{in} 2.	

00 6. 1.318

1.322 90 5.

1.327 5.80

1.332 5.70

1.338 60 ы. С

1.343 5.50

1.349 5.40

1.355 5.30

1.361 20 ۍ. م

1.373

1.380 4.90

1.387 4.80

1.3944.70

1.401 4.60

1.4094.50

1.417 4.40

1.425 4.30

1.434

1.442 4.10

4.20

 $c/R_{
m in}$ ξ_2^2

5.10 1.367

5.00

附录E

(资料性附录)

应力腐蚀和高温蠕变环境对安全评定的影响

本附录给出了考虑应力腐蚀和高温蠕变环境对安全评定的影响时应遵循的一般性原则。

E.1 应力腐蚀对安全评定的影响

当存在应力腐蚀条件时,按照本标准附录 D 计算缺陷部位的 K₁值,并与按照 GB 15970.6—1998 测定的材料在使用环境下的 K_{1scc}进行比较,如果:

$$K_1 < K_{\rm ISCC} \tag{E.1}$$

则不考虑应力腐蚀对安全评定的影响。否则,应按照 GB 15970.6—1998 测定的在使用环境下裂纹的 应力腐蚀扩展速率 da/dt,估算出至设计寿命期或下一检验期的裂纹最终尺寸,再按照本标准第5章进 行安全评定。

E.2 高温蠕变环境对安全评定的影响

如果满足 E.2.1.1 或 E.2.2.1 的规定,则不需考虑高温蠕变环境对安全评定的影响;否则,必须考虑蠕变失效的可能性,而不能仅采用本标准进行断裂与塑性失效评定。

E.2.1 第一种不考虑高温蠕变环境对安全评定的影响的条件

E.2.1.1 当整个运行期间的最高工作温度小于可忽略蠕变效应的温度 T。时,可不考虑高温蠕变环境 对安全评定的影响。

E.2.1.2 T。的确定方法

对于拉伸蠕变断裂应变大于 10%的材料, T_0 为在该温度下的流变应力 σ 的作用下试件达到要求的工作寿命时其蠕变达到 0.2%时的温度。

对于拉伸蠕变断裂应变小于 10%的材料,T。是在达到要求的工作寿命时实际蠕变断裂伸长应变为 2%时相对应的温度。

压力容器常用钢材在使用时间不大于 100 000 h 时,其 T。可按表 E.1 确定。

E.2.1.3 对于焊接接头,需要了解缺陷所在焊接接头部位材料的蠕变断裂性能。但如果能够确保焊 接热影响区的蠕变断裂性能不低于母材的性能,则可以根据母材的有关蠕变性能来确定 T₀。

E.2.2 第二种不考虑高温蠕变环境对安全评定的影响的条件

E.2.2.1 当结构在整个运行历程的累积寿命损伤率小于 1.0,即 $\Sigma \frac{dt}{t(T)} < 1.0$ 时,可不考虑高温蠕变 环境对安全评定的影响。

E.2.2.2 t(T)的确定方法

对于拉伸蠕变断裂应变大于 10%的材料,t(T)为在温度 T 和该温度下的流变应力 σ 的作用下产生 0.2%蠕变应变所需要的时间。

对于拉伸蠕变断裂应变小于 10%的材料,t(T)为对应蠕变应变为 2%的时间。

E.2.2.3 对于焊接接头,需要了解缺陷所在焊接接头部位材料的蠕变断裂性能。但如果能够确保焊接热影响区的蠕变断裂性能不低于母材的性能,则可以根据母材的有关蠕变性能来确定 t(T)。

表 E.1 压力容器常用钢材在使用时间不大于 100 000 h 时的 T。

钢号	使用状态	T₀/°C
20R	热轧,正火	375
16MnR	热轧,正火	375
15MnVR	热轧,正火	375
15MnVNR	正火	375
18MnMoNbR	正火加回火	375
13MnNiMoNbR	正火加回火	375
07MnCrMoVR	调质	250
16MnDR	正火	350
07MnNiCrMoVDR	调质	250
09Mn2VDR	正火	100
09MnNiDR	正火,正火加回火	350
15CrMoR	正火加回火	475
14Cr1MoR	正火加回火	475
12Cr2Mo1R	正火加回火	450
0Cr13	退火	400
0Cr18Ni9	固溶	425
0Cr18Ni10Ti	固溶或稳定化	425
0Cr17Ni12Mo2	固溶	425
0Cr18Ni12Mo2Ti	固溶	425
0Cr19Ni13Mo3	固溶	425
00Cr19Ni10	固溶	425
00Cr17Ni14Mo2	固溶	425
00Cr19Ni13Mo3	固溶	425
00Cr18Ni5Mo3Si2	固溶	300

附录F

(资料性附录)

平面缺陷的分析评定方法

本附录给出了平面缺陷安全评定的优化分析方法。

F.1 特殊和附加的主要符号

Α	长表面裂纹形状因子的修正系数,无量纲;
A_0	半椭圆环向表面裂纹形状因子的修正系数,无量纲;
A_1	环向表面裂纹极限载荷的影响系数,无量纲;
а	表面裂纹深度, mm;
a_0	表面裂纹原始深度, mm;
a _e	考虑塑性区修正的表面裂纹深度,mm;
В	容器壁厚,mm;
B_{R}	表面裂纹塑性区修正的影响因子,无量纲;
С	表面裂纹半长,mm;
c_0	表面裂纹原始半长, mm;
Ε	材料的弹性模量, MPa:
F	表面裂纹的形状因子,无量纲;
F_{e}	考虑塑性区修正的表面裂纹形状因子,无量纲;
G_0	均匀残余应力的等效因子,无量纲;
G_{i}	非均匀残余应力时的等效因子,无量纲;
Н	J积分全塑性解;
H_1	长屈服平台材料应力应变曲线分两段进行 ROR 关系拟合时,相应 a1, n1 的 EPRI 全塑
	性解;
H_2	长屈服平台材料应力应变曲线分两段进行 ROR 关系拟合时,相应 a2,n2 的 EPRI 全塑
	性解;
J	J 积分值,N/mm;
J_{e}	考虑塑性区修正的弹性 J 积分值, N/mm;
$J_{\rm p}$	全塑性 J 积分值, N/mm;
$J_{R}(\Delta a)$	裂纹稳定扩展 Δa 时材料的延性撕裂断裂韧度, N/mm ;
$M_{\rm g}$	鼓胀效应系数,无量纲;
т	等效残余应力的等效因子计算参数,无量纲;
n	ROR 关系材料的应变硬化指数,无量纲;
n_1	长屈服平台材料应力应变曲线分两段进行 ROR 关系拟合时,第一段的应变硬化指数,
	无量纲;
n_2	长屈服平台材料应力应变曲线分两段进行 ROR 关系拟合时,第二段的应变硬化指数,
	无量纲;
$n_{ m L}$	结构塑性失稳破坏模式的安全系数,无量纲;
$n_{\rm ins}$	裂纹延性撕裂破坏模式的综合安全系数,无量纲;

Р	轴向拉伸荷载,N;
Þ	要求安全评定的容器的工作压力, MPa;
P。	表面裂纹的参考轴向拉伸荷载,N;
Pc	长屈服平台材料应力应变曲线分两段进行 ROR 关系拟合时,联接点处的荷载值,N;
PL	结构塑性极限载荷,轴向拉力,N;
$P_{\rm f}$	延性撕裂失稳载荷,轴向拉力,N;
₿f	延性撕裂失稳载荷,内压,MPa;
p _L	结构塑性极限载荷,内压,MPa;
[<i>p</i>]	许用载荷,内压,MPa;
$[p_i]$	裂纹撕裂失稳破坏模式的许用载荷,内压,MPa;
$[P_{f}]$	裂纹撕裂失稳破坏模式的许用载荷,轴向拉力,N;
$[p_L]$	结构塑性失稳破坏模式的许用载荷,内压,MPa;
$[P_L]$	结构塑性失稳破坏模式的许用载荷,轴向拉力,N;
R_{i}	容器内半径,mm;
R。	容器外半径,mm;
t	容器壁厚, mm;
z	残余应力分布曲线的厚度坐标值,mm;
α	ROR 材料应力应变关系曲线的应力应变硬化系数,无量纲;
α_{i}	长屈服平台材料应力应变曲线分两段进行 ROR 关系拟合时,第一段的应变硬化系数,
	无量纲;
α_2	长屈服平台材料应力应变曲线分两段进行 ROR 关系拟合时,第二段的应变硬化系数,
	无量纲;
$\boldsymbol{\alpha}_0$	容器轴向表面裂纹形状因子的修正系数,无量纲;
α,	考虑塑性区修正的轴向表面裂纹形状因子的修正系数,无量纲;
$\alpha_{\rm L}$	环向表面裂纹塑性极限载荷的塑性极限角,弧度;
$\boldsymbol{\alpha}_i$	残余应力等效因子的计算参数,无量纲;
σ	应力, MPa;
õ	$\tilde{\sigma} = \sigma / \sigma_{s}$,无量纲应力,无量纲;
$\bar{\sigma}$	材料的流动应力, MPa, $\sigma = \frac{1}{2}(\sigma_s + \sigma_b);$
$\sigma_{ m c}$	材料应力应变关系分两段拟合时,联接点处应力,MPa;
$\widetilde{\sigma}_{c}$	$\tilde{\sigma}_{c} = \sigma_{c} / \sigma_{s}$,无量纲应力,无量纲;
$\sigma_{ m s}$	材料的屈服点, MPa;
$\sigma_{ m b}$	材料的抗拉强度, MPa;
σ_i	延性撕裂失稳应力, MPa;
$\sigma_{\rm L}$	结构塑性极限载荷应力, MPa;
$\sigma_{ m R}$	容器的实际残余应力值, MPa;
$\sigma_{ m R}^{ m e}$	容器的等效残余应力值, MPa;
σ _(i)	残余应力分布曲线应力系数, MPa;
θ	环向裂纹半角,弧度;
ε	应变值,无量纲;
ε, 屈服应变值,无量纲;

ν 泊松比,无量纲;

ξ 环向表面裂纹极限载荷计算公式中,容器厚度与外半径之比,ξ=B/R₀,无量纲。

F.2 评定方法

平面缺陷的分析评定方法在于确定当裂纹起裂后,在裂纹发生延性稳定扩展至失稳临界尺寸过程 中,构件所能承受的许用载荷,并对结构的安全性进行评价。

F.3 适用范围

平面缺陷的分析评定方法适用于 ROR 关系材料及具有较长屈服平台材料的容器内表面的环向裂 纹、整圈环向裂纹、轴向裂纹及超长轴向裂纹等。

F.4 评定程序

平面缺陷的分析评定按下列步骤进行:

- a) 裂纹构形及材料断裂性能的确定;
- b) 裂纹延性撕裂失稳载荷(应力)的确定;
- c) 构件塑性极限载荷(应力)的确定;
- d) 安全系数的选取及许用载荷的确定;
- e) 含裂纹结构安全性的评价。

F.5 分析评定所需基本数据的确定

分析评定时所需确定的裂纹构形尺寸和材料性能等基本数据如下:

- a) 容器厚度、表面裂纹原始深度、裂纹原始半长(B、 a_0 、 c_0);
- b) 容器内、外半径(R_i 、 R_o);
- c) ROR 关系材料的应变硬化系数和指数(a、n);
- d) 对具有较长屈服平台材料应力应变曲线,分两段进行 ROR 关系拟合得到的应变硬化系数和 指数(α₁、α₂、n₁、n₂),两段拟合曲线交点处应力(σ_c)。
- e) 材料屈服点、抗拉强度、弹性模量、泊松比($\sigma_s, \sigma_b, E, \nu$);
- f) 材料的 J_{R} 阻力曲线数据²⁾;
- g) 焊接残余应力。对于轴向表面裂纹,如确认沿筒体壁厚分布有环向残余应力,则应在评定前, 通过实验或其他可靠方法确定残余应力 σ_R,并将残余应力沿壁厚方向的分布函数用式(F.1) 的形式表示:

$$\sigma_{\rm R} = \sigma_{(0)} + \sigma_{(1)} \frac{Z}{B} + \sigma_{(2)} \left(\frac{Z}{B}\right)^2 + \sigma_{(3)} \left(\frac{Z}{B}\right)^3 (\dot{E} \, h \, \underline{\mathcal{B}} \, , Z = 0)$$
 (F.1)

F.6 安全系数的选取

- a) 对于裂纹撕裂失稳的破坏模式,安全系数 n_{ins}取 1.5~2.2,具体数值可根据评定要求、失效后 果以及评定经验综合确定。
- 2) 参照可靠的标准试验方法进行测试。如果采用单试样(柔度)法测定时,可以从三个单试样试验所获得的最低 曲线中得到评定数据。如果采用多试样法,至少应有四个有效试样的数据,并且要从下包络曲线或回归曲线减 去一个标准偏差的下分散带来获得数据。

- b) 对于结构塑性失稳的破坏模式,安全系数 n_L 按下述原则选取:失效后果一般的取 1.3;失效后 果严重的取 1.5。
- F.7 裂纹延性撕裂失稳载荷的确定
- F.7.1 计算步骤
 - a) 给定一系列裂纹扩展量 $\Delta a(i)(i=1,2,...,n);^{3}$
 - b) 在材料 J_{R} 阻力曲线上确定一系列与 $\Delta a(i)$ 相对应的材料撕裂断裂韧度 $J_{R}[\Delta a(i)](i=1, 2, ..., n];$
 - c) 由方程(F.2)解出平衡应力 σ(i)(i=1,2,...,n):⁴

$$J(a_0 + \Delta a(i), \sigma(i)) = \Delta J_{R}[\Delta a(i)]$$
 (F.2)

方程左端项为被评定结构含深为 $a_0 + \Delta a(i)$ 、半长为 c_0 的裂纹在外载应力 $\sigma(i)$ 作用下的 J 积分,计算公式由(F.7-2)给出,F.9 给出考虑残余应力时的 J 积分计算公式;

- d) 在由 *n* 对离散点[$\sigma(i), \Delta a(i)$] 描述的 $\sigma \sim \Delta a$ 曲线上,确定 $\frac{\partial \sigma}{\partial \Delta a} = 0$ 处的 σ 和 Δa ;⁵⁾
- e) 上步中确定的σ即为裂纹撕裂失稳应力σ_f,相应的载荷即为延性撕裂失稳载荷 P_f 或 p_f,Δa 即 为裂纹由稳定扩展至失稳扩展的临界裂纹扩展量 Δa_f。

F.7.2 含裂纹结构 J 积分计算公式

含裂纹构件的弹塑性 J 积分等于弹性 J 积分 J。与全塑性 J 积分 J。之和,即

$$J = J_e + J_p \tag{F.3}$$

本附录给出四种典型裂纹构形的 J 积分表达式。计算全塑性 J 积分 J_p 时需要的全塑性解系数 H₁ 由本附录 F.12 给出。

F.7.2.1 容器内表面环向裂纹 J 积分表达式

$$J_{e} = \frac{\sigma_{s}^{2} a}{E} \left[\pi (1 - \nu^{2}) \cdot F_{e}^{2} \cdot \left(\frac{B}{a}\right) \cdot \left(\frac{\sigma}{\sigma_{s}}\right)^{2} \right]$$
 (F. 4-1)

$$\frac{a_{\star}}{B} = \frac{a}{B} + \frac{n-1}{6(n+1)} \cdot F^2 \cdot \left(\frac{\sigma}{\sigma_s}\right)^2 / \left[1 + B_{\rm R} \left(\frac{\sigma}{\sigma_s}\right)^2\right]$$
(F. 4-2)

$$\begin{cases} F = 0.25 + 0.529 \ 8 \cdot \left(\frac{a}{BA_{0}}\right) + 0.383 \ 5 \cdot \left(\frac{a}{BA_{0}}\right)^{2} & \underline{\exists} \frac{a}{BA_{0}} \ge 0.25 \ \text{Bf} \\ F = 3.72 \cdot \left(\frac{a}{BA_{0}}\right) - 13.475 \cdot \left(\frac{a}{BA_{0}}\right)^{2} + 19.988 \cdot \left(\frac{a}{BA_{0}}\right)^{3} & \underline{\exists} \frac{a}{BA_{0}} < 0.25 \ \text{Bf} \\ A_{0} = (0.25 + a/c)^{0.58} & (F.4-4) \end{cases}$$

$$B_{\rm R} = \left[\left(R_{\rm o}^2 - R_{\rm i}^2 \right) / \left\{ R_{\rm o}^2 - \left(R_{\rm i} + a \right)^2 + \left(1 - \frac{c}{4R_{\rm i}} \right) \left(2R_{\rm i}a + a^2 \right) \right\} \right]^2 \qquad (F. 4-5)$$

$$\sigma = P / [\pi (R_o^2 - R_i^2)]$$
 (F. 4-6)

 $\begin{cases} J_{\mathfrak{p}} = \frac{\sigma_{\mathfrak{s}}^{2} a}{E} \left[\alpha_{1} \left(\frac{B}{a} \right) \cdot H_{1} \cdot \left(\frac{\sigma}{\sigma_{\mathfrak{s}}} \right)^{n_{1}+1} \right] & \stackrel{\text{!!}}{=} \sigma \leqslant \sigma_{\mathfrak{c}} \text{ If} \\ J_{\mathfrak{p}} = \frac{\sigma_{\mathfrak{s}}^{2} a}{E} \left\{ \alpha_{1} \left(\frac{B}{a} \right) \cdot H_{1} \cdot \left(\frac{\sigma_{\mathfrak{c}}}{\sigma_{\mathfrak{s}}} \right)^{n_{1}+1} + \alpha_{2} \left(\frac{B}{a} \right) \cdot H_{2} \cdot \left[\left(\frac{\sigma}{\sigma_{\mathfrak{s}}} \right)^{n_{2}+1} - \left(\frac{\sigma_{\mathfrak{c}}}{\sigma_{\mathfrak{s}}} \right)^{n_{2}+1} \right] \right\} & \stackrel{\text{!!}}{=} \sigma > \sigma_{\mathfrak{c}} \text{ If} \end{cases}$

F.7.2.2 容器内表面全周长环向裂纹 J 积分表达式

3) Δa(i)由评定计算者根据经验给定,数据间距越小计算精度越高。

- 4) 方程 F.2 是以 σ(i)为单一未知数的非线性方程,需迭代求解,验敛误差应不大于 2%。
- 5) 也可用[$\sigma(i), \Delta a(i)$]数据系列中的最大 $\sigma(i)$ 所对应的位置近似作为 $\sigma \sim \Delta a$ 曲线上 $\frac{\partial \sigma}{\partial \Delta a} = 0$ 的位置。

$$J_{e} = \frac{\sigma_{s}^{2} a}{E} \bigg[\pi (1 - \nu^{2}) \cdot F_{e}^{2} \cdot \left(\frac{a_{e}}{a}\right) \cdot \left(\frac{\sigma}{\sigma_{s}}\right)^{2} \bigg]$$
 (F. 5-1)

$$\frac{a_{\rm e}}{a} = 1 + \frac{n-1}{6(n+1)} \cdot F^2 \cdot \left(\frac{\sigma}{\sigma_{\rm s}}\right)^2 / \left[1 + \left(\frac{P}{P_0}\right)^2\right]$$
(F. 5-2)

$$F = 1.1 + A \left[1.948 \cdot \left(\frac{a}{B}\right)^{1.5} + 0.334 \ 2 \cdot \left(\frac{a}{B}\right)^{4.2} \right]$$
 (F.5-3)

$$\begin{cases} A = [0.125 \cdot (R_i/B) - 0.25]^{0.25} & \text{if } 5 \leq (R_i/B) \leq 10 \text{ fr} \\ A = [0.4 \cdot (R_i/B) - 3.0]^{0.25} & \text{if } 10 \leq (R_i/B) \leq 20 \text{ fr} \end{cases}$$
(F. 5-4)

$$\frac{P}{P_{0}} = \frac{\sqrt{3}}{2} \cdot \frac{R_{0}^{2} - R_{i}^{2}}{R_{0}^{2} - (R_{i} + a)^{2}} \cdot \left(\frac{\sigma}{\sigma_{s}}\right)$$
(F. 5-5)

$$\sigma = P / [\pi (R_o^2 - R_i^2)]$$
 (F. 5-6)

$$\begin{cases} J_{p} = \frac{\sigma_{s}^{2} a}{E} \left[\alpha_{1} \left(\frac{B}{a} \right) \cdot \left(1 - \frac{a}{B} \right)^{2} \cdot H_{1} \cdot \left(\frac{P}{P_{o}} \right)^{n_{1}+1} \right] & \qquad \leq \sigma_{c} \text{ ff} \\ \\ J_{p} = \frac{\sigma_{s}^{2} a}{E} \left\{ \alpha_{1} \left(\frac{B}{a} \right) \cdot \left(1 - \frac{a}{B} \right)^{2} \cdot H_{1} \cdot \left(\frac{P_{c}}{P_{0}} \right)^{n_{1}+1} + \alpha_{2} \left(\frac{B}{a} \right) \cdot \left(1 - \frac{a}{B} \right)^{2} \cdot H_{2} \cdot \left[\left(\frac{P}{P_{o}} \right)^{n_{2}+1} - \left(\frac{P_{c}}{P_{o}} \right)^{n_{2}+1} \right] \right\} \\ & \qquad \leq \sigma_{c} \text{ ff} \quad (\text{ F. 5-7 }) \end{cases}$$

$$\frac{P_{\rm c}}{P_{\rm o}} = \frac{\sqrt{3}}{2} \cdot \frac{R_{\rm o}^2 - R_{\rm i}^2}{R_{\rm o}^2 - (R_{\rm i} + a)^2} \cdot \left(\frac{\sigma_{\rm c}}{\sigma_{\rm s}}\right) \tag{F. 5-8}$$

F.7.2.3 容器内表面轴向裂纹 J 积分表达式

$$J_{e} = \frac{\sigma_{s}^{2} a}{E} \left[\pi (1 - \nu^{2}) \cdot F_{e}^{2} \cdot \left(\frac{B}{a}\right) \cdot \left(\frac{\sigma}{\sigma_{s}}\right)^{2} \right]$$
 (F. 6-1.)

$$F_{\rm e} = 0.25 + 0.475 \ 9\alpha_{\rm e} + 0.126 \ 2\alpha_{\rm e}^2$$
 (F. 6-2)

$$\alpha_{e} = \left[\frac{a}{B} + \frac{n-1}{6(n+1)} \cdot \frac{F^{2} \cdot (\sigma/\sigma_{s})^{2}}{1 + B_{R} \cdot (\sigma/\sigma_{s})^{2}}\right] / (a/c)^{0.58}$$
 (F. 6-3.)

$$F = 0.25 + 0.475 \ 9\alpha_0 + 0.126 \ 2\alpha_0^2$$
 (F. 6-4)

$$\alpha_0 = \left(\frac{a}{B}\right) / \left(\frac{a}{c}\right)^{0.58}$$
 (F. 6-5)

$$B_{\rm R} = 1.045 \ 3\left\{ \left[1 - \frac{a}{B} \right] / \left(1 + 0.153 \ 3 \frac{c^2}{B^2} \right)^{0.5} \right] / \left(1 - \frac{a}{B} \right) \right\}$$
 (F. 6-6)

$$\sigma = p \cdot \frac{R_o^2 + R_i^2}{R_o^2 - R_i^2}$$
 (F. 6-7)

$$\begin{cases} J_{\mathfrak{p}} = \frac{\sigma_{s}^{2} a}{E} \left[\alpha_{1} \cdot \left(\frac{B}{a} \right) \cdot H_{1} \cdot \left(\frac{\sigma}{\sigma_{s}} \right)^{n_{1}+1} \right] & \stackrel{\text{th}}{=} \sigma \leqslant \sigma_{c} \text{ If} \\ J_{\mathfrak{p}} = \frac{\sigma_{s}^{2} a}{E} \left\{ \alpha_{1} \cdot \left(\frac{B}{a} \right) \cdot H_{1} \cdot \left(\frac{\sigma_{c}}{\sigma_{s}} \right)^{n_{1}+1} + \alpha_{2} \cdot \left(\frac{B}{a} \right) \cdot H_{2} \cdot \left[\left(\frac{\sigma}{\sigma_{s}} \right)^{n_{2}+1} - \left(\frac{\sigma_{c}}{\sigma_{s}} \right)^{n_{2}+1} \right] \right\} & \stackrel{\text{th}}{=} \sigma > \sigma_{c} \text{ If} \end{cases}$$

$$(F, 6-8)$$

F.7.2.4 容器内表面长轴向裂纹 J 积分表达式

$$J_{e} = \frac{\sigma_{s}^{2} a}{E} \left[\pi (1 - \nu^{2}) \cdot F_{e}^{2} \cdot \left(\frac{a_{e}}{a}\right) \cdot \left(\frac{\sigma}{\sigma_{s}}\right)^{2} \right]$$
 (F. 7-1)

$$\frac{a_{\rm e}}{a} = 1 + \frac{n-1}{6(n+1)} \cdot \frac{F^2 \cdot (\sigma/\sigma_{\rm s})^2}{1 + B_{\rm R}(\sigma/\sigma_{\rm s})^2}$$
 (F.7-2)

$$F = 1.1 + A \left[4.951 \cdot \left(\frac{a}{B}\right)^2 + 1.092 \cdot \left(\frac{a}{B}\right)^4 \right]$$
 (F.7-3)

$$\begin{cases} A = [0.125 \cdot (R_i/B) - 0.25]^{0.25} & \text{ mean} 5 \leqslant (R_i/B) \leqslant 10 \text{ mean} \\ A = [0.2 \cdot (R_i/B) - 1.0]^{0.25} & \text{ mean} 10 \leqslant (R_i/B) \leqslant 20 \text{ mean} \end{cases}$$
(F.7-4)

$$B_{\rm R} = \frac{3}{16} \left[(1 - R_{\rm i}^2 / R_{\rm o}^2) (R_{\rm i} + a) / (B - a) \right]^2$$
 (F.7-5)

$$\sigma = 2pR_o^2/(R_o^2 - R_i^2)$$
 (F.7-6)

$$\left[J_{\mathfrak{p}} = \frac{\sigma_{\mathfrak{s}}^{*} a}{E} \left\{ \alpha_{1} \left(\frac{B}{a}\right) \cdot H_{1} \cdot \left(\frac{\sigma_{\mathfrak{c}}}{\sigma_{\mathfrak{s}}}\right)^{n_{1}+1} + \alpha_{2} \cdot \left(\frac{B}{a}\right) \cdot H_{2} \cdot \left[\left(\frac{\sigma}{\sigma_{\mathfrak{s}}}\right)^{n_{2}+1} - \left(\frac{\sigma_{\mathfrak{c}}}{\sigma_{\mathfrak{s}}}\right)^{n_{2}+1}\right] \right\} \quad \stackrel{\text{def}}{=} \sigma > \sigma_{\mathfrak{c}} \text{ fr}$$

$$(F. 7-7)$$

F.8 构件塑性极限载荷的确定

计算裂纹扩展至临界尺寸时含裂纹构件的塑性极限载荷 P_L 或 p_L 。本附录给出四种裂纹构形的塑性极限载荷表达式,应以 $a_0 + a_f$ 作为裂纹深度 a 代入公式计算。

F.8.1 容器内表面环向裂纹

$$P_{\rm L} = 2\pi RB\sigma \left[\frac{2\alpha_{\rm L}}{\pi} - \left(\frac{a}{B}\right) \left(\frac{\theta}{\pi}\right) \cdot \left(2 - 2\xi + \frac{a}{B}\xi\right) / (2 - \xi) \right]$$
 (F. 8-1)

$$\alpha_{\rm L} = \arccos(A_1 \sin \theta) \tag{F. 8-2}$$

$$A_{1} = \frac{a}{B} \left[(1-\xi) \left(2 - 2\xi + \frac{a}{B} \xi \right) + \left(1 - \xi + \frac{a}{B} \xi \right)^{2} \right] / \left[1 + (2-\xi) (1-\xi) \right] / 2 \quad (F.8-3)$$

$$\theta = \frac{\pi_c}{4R_i} \tag{F. 8-4}$$

$$\boldsymbol{\xi} = B/R_{\rm o} \tag{F. 8-5}$$

F.8.2 容器内表面全周长环向裂纹

$$P_{\rm L} = \left(\frac{2\pi}{\sqrt{3}}\right)\bar{\sigma}\left[R_{\rm o}^2 - (R_{\rm i} + a)^2\right]$$
 (F.9-1)

$$\sigma = \frac{1}{2}(\sigma_{\rm s} + \sigma_{\rm b}) \tag{F.9-2}$$

F.8.3 容器内表面轴向裂纹

$$p_{\rm L} = \sigma \left(\frac{B}{R_{\rm o}}\right) \left[\left(1 - \frac{a}{B}\right) / \left(1 - \frac{a}{B} / M_{\rm g}\right) \right]$$
 (F. 10-1)

$$M_{\rm g} = [1 + 1.61c^2 / (RB)]^{0.5}$$
 (F. 10-2)

F.8.4 容器内表面长轴向裂纹

$$p_{\rm L} = \left(\frac{2}{\sqrt{3}}\right) \bar{\sigma} \left(\frac{B}{R_{\rm i}}\right) \left\{ \left(1 - \frac{a}{B}\right) \middle| \left[1 + \frac{a}{B} \middle| (R_{\rm i}/t) \right] \right\}$$
(F.11)

F.9 残余应力 σ_R 在延性断裂评定中的考虑

在J积分计算中,只需考虑残余应力对线弹性部分J。中的附加影响:

$$J = \frac{\sigma_{s}^{2}a}{E} \left[\pi (1 - \nu^{2}) \cdot F_{\epsilon}^{2} \cdot \left(\frac{B}{a}\right) \cdot \left(\frac{\sigma + \sigma_{\epsilon}^{2}}{\sigma_{s}}\right)^{2} + \alpha \left(\frac{B}{a}\right) \cdot H \cdot \left(\frac{\sigma}{\sigma_{s}}\right)^{n+1} \right]$$
(F.12)

式中,等效残余应力 σ_{R} 由实际残余应力 σ_{R} 分布曲线(公式 F.1)根据"应力强度因子相等"原则换算。

$$K_1 = \sqrt{\pi B} \sum_{0}^{3} \sigma_{(i)} G_i$$
 (F.13)

等效的均匀残余应力 எ 产生的应力强度因子为:

$$K_1 = \sqrt{\pi B} \cdot \sigma_{\mathsf{R}}^{\mathsf{e}} \cdot G_0 \qquad (\mathsf{F}.14)$$

$$\sigma_{\rm R}^{\rm e} = \left(\sum_{0}^{3} \sigma_{(i)} G_{i}\right) / G_{0}$$
 (F.15)

$$G_{i} = (A_{1}\alpha_{i} + A_{2}\alpha_{i}^{2} + A_{3}\alpha_{i}^{3} + A_{4}\alpha_{i}^{4} + A_{5}\alpha_{i}^{5}) / \left(0.102 \frac{R_{i}}{B} - 0.02\right)^{0.03}$$
(F.16)

$$\alpha_i = \left(\frac{a}{B}\right) / \left(\frac{a}{c}\right)^{m}$$
 (F.17)

公式(F.16)、公式(F.17)中的系数 A1~A5 及 m 的取值见表 F.1。

	A ₁	A_2	A_3	A_4	A_5	m
G ₀	1.776 7	-2.597 5	2.752 0	-1.323 7	0.236 3	0.58
G_1	0.104 5	0.418 9	0	0	0	0.22
G_2	0.020 4	-0.004 0	0.421 3	0	0	0.10
G_3	0.072 8	-0.360 1	0.668 8	0	0	0.05

表 F.1 计算等效残余应力时各系数的取值

F.10 许用载荷的确定

裂纹撕裂失稳破坏模式下的许用载荷为:

$$[P_{\rm f}] = \frac{P_{\rm f}}{n_{\rm ins}} \, \operatorname{\mathfrak{g}}[p_{\rm f}] = \frac{p_{\rm f}}{n_{\rm ins}} \tag{F.18}$$

结构塑性失稳破坏模式下的许用载荷为:

$$[P_{\rm L}] = \frac{P_{\rm L}}{n_{\rm L}} \, {\rm gm}[p_{\rm L}] = \frac{p_{\rm f}}{n_{\rm L}} \tag{F.19}$$

结构的许用载荷为:

$$[P] = \min\{[P_i], [P_L]\} \notin [p] = \min\{[p_i], [p_L]\}$$
(F.20)

F.11 安全性评价

如果工作载荷小于许用载荷,则认为该缺陷是安全或可以接受的;否则,不能保证安全或不可接受。

F.12 各种裂纹构形的 J 积分全塑性解

F. 12.1 容器内表面有限长环向裂纹全塑性解 H(R_i/t=10)

GB/T 19624-2004

						(n-1)	
/ D				$ heta/\pi$			
a/B	0.05	0.10	0.15	0.20	0.25	0, 30	0.35
0.100	0.373	0.377	0.380	0.383	0.386	0.388	0. 389
0.125	0.466	0.471	0.481	0.488	0.492	0.495	0.498
0.150	0.560	0.572	0.585	0.596	0.603	0.608	0.611
0.200	0.746	0.772	0.799	0.822	0.838	0.848	0.856
0.250	0.933	0.995	1.057	1.101	1.130	1.150	1.165
0.300	1.119	1.239	1.362	1.436	1.485	1.520	1.546
0.350	1.306	1.530	1.717	1.832	1.909	1.965	2.007
0.400	1.492	1.854	2.122	2.291	2.407	2.492	2.557
0.450	1.679	2.211	2.580	2.818	2.985	3.108	3.202
0.500	1.866	2.600	3.090	3.415	3.646	3.817	3.950
0.550	2.052	3.021	3.655	4.085	4.394	4.627	4.808
0.600	2.239	3.473	4,274	4.829	5.234	5.542	5.784
0.650	2.471	3.955	4.949	5.650	6.169	6.568	6.883
0.700	2.715	4.467	5.678	6.550	7.202	7.708	8, 112
0.750	2.966	5.009	6.463	7.529	8.337	8.969	9.476
0.800	3. 223	5.580	7.303	8.588	9.575	10.354	10,983
				θ/π			
a/B	0.40	0.45	0.50	0.55	0.60	0.65	0.70
0.100	0.391	0.393	0.394	0.394	0.394	0.394	0.394
0.125	0.500	0.502	0.504	0.504	0.505	0.505	0.506
0.150	0.614	0.616	0.617	0.619	0.620	0.621	0.622
0. 200	0.862	0.867	0.870	0.874	0.876	0.879	0.881
0.250	1.176	1,186	1.193	1, 199	1,205	1.209	1.213
0.300	1.566	1.583	1.596	1.607	1.616	1.624	1.631
0.350	2.040	2.067	2.089	2.107	2.122	2.136	2.147
0.400	2,608	2.649	2.682	2,711	2.735	2,755	2.774
0.450	3, 276	3. 337	3. 387	3.429	3.465	3.496	3.523
0.500	4.056	4, 142	4,214	4,274	4.326	4.370	4,409
0.550	4, 954	5.073	5.172	5, 256	5. 328	5 391	5 446
0.600	5 979	6 139	6 273	6 387	6 485	6 570	6 645
0,650	7 138	7 350	7 527	7 678	7 808	7 922	8 021
0.000	0 440	0 710	0.040	0.140	0.000	1,322	0.021
0.700	0.440	0.713	0.943	9.140	9.309	9,408	9.000
0.750	9.892	10.239	10.532	10.783	11.001	11.191	11.350
0.800	11.501	11.934	12.303	12.619	12.894	13.135	13.348

⁽*n*=1)

				θ/π			
a/B	0.05	0.10	0.15	0.20	0.25	0.30	0.35
0. 100	0.376	0, 386	0.444	0.456	0.490	0.501	0.510
0.125	0.473	0.485	0.550	0.565	0.577	0.621	0.654
0.150	0.574	0.595	0.665	0.705	0.725	0.753	0.781
0, 200	0. 787	0.840	0.920	1.006	1.053	1.082	1.095
0,250	0.987	1.095	1.240	1.380	1.450	1.465	1.495
0.300	1.196	1.410	1.614	1.820	1.895	2.000	2.040
0,350	1. 435	1.832	2.160	2.378	2.710	2.720	2.730
0.400	1. 681	2.322	2.954	3.250	3.505	3.567	3.563
0.450	1.919	2.843	3.665	3.945	4.420	4.572	4.730
0.500	2. 181	3.479	4.682	5, 385	5.779	6.120	6.150
0.550	2.430	4.135	5.768	6.852	7.478	7.692	8.110
0.600	2.638	4.710	6.944	8.408	9.306	9.860	10.250
0.650	2. 882	5.270	7.949	10.194	11.488	12.586	13.100
0.700	3.149	5.894	9.244	12.414	14.447	15.637	17.000
0.750	3. 542	6.955	11.533	15,948	19.577	22.489	24.791
0.800	3.980	8.200	14.690	21.104	27.066	32.987	38.199
a/B				θ/π			
w) 25	0.40	0.45	0.50	0.55	0.60	0.65	0.70
0.100	0.513	0.512	0.510	0.510	0.505	0.493	0. 481
0.125	0.658	0.655	0.653	0.651	0.649	0.645	0.633
0.150	0.781	0.780	0.779	0.777	0.775	0.759	0.743
0.200	1.089	1.080	1.072	1.076	1.073	1.067	1.050
0.250	1.495	1.495	1.492	1.490	1.488	1.485	1.379
0.300	2.040	1.998	1.945	1.940	1.900	1.840	1.800
0.350	2.730	2.700	2.680	2.660	2.640	2.620	2.590
0.400	3.560	3.560	3.558	3.556	3.554	3.551	3.546
0.450	4.720	4.710	4.700	4.680	4.660	4.640	4.620
0.500	6.140	6.120	6.100	6.090	6.080	6.070	6.065
0.550	8. 100	8.100	8.090	8,080	8.080	8.070	8.060
0.600	10.490	10.490	10, 480	10.470	10.460	10.450	10.440
0.650	13.455	13.460	13.610	13.750	13,937	14.083	14.188
0.700	18.150	18.150	18.120	18,100	18.080	18.060	18.040
0.750	26.955	27, 937	28.919	29.960	30.332	30.489	30.368
0.800	41.337	42.933	43.828	45.754	46.255	46.369	45.877

GB/T 19624-2004

(1)				$ heta/\pi$			
a/B	0.05	0.10	0.15	0.20	0.25	0.30	0.35
0.100	0.404	0.438	0.488	0.532	0.566	0,588	0.584
0. 125	0.505	0.549	0.654	0.708	0.740	0.775	0.764
0.150	0.617	0.682	0.810	0.910	0.940	0.976	0.946
0.200	0.842	0.951	1.155	1.370	1.488	1.550	1.258
0.250	1.079	1.290	1.590	1.920	2.200	2.410	2.056
0.300	1.336	1.720	2.284	2.767	3.350	3.380	3.184
0.350	1.681	2.410	3.410	4.140	4.790	4.900	4.813
0.400	2.038	3.210	4.983	6.090	7.250	7.585	7.689
0.450	2.415	4,150	6.692	8.454	9.980	10.572	10.835
0.500	2.780	5.150	8.624	11.318	13.347	14. 481	15.021
0.550	3.173	6.320	10.973	15.040	17.331	18.672	18,991
0.600	3.446	7.220	13.016	18.382	21.341	23.548	25.252
0.650	3.855	8.385	15.164	21.288	26.262	29.944	32.630
0.700	4.272	9.590	17.803	26.942	35.817	40.120	47.572
0.750	4.680	10.800	20.760	33.771	45.377	55, 325	61.093
0.800	5.092	12.050	27.214	45.447	63.942	92,010	123.42
(1)				θ/π			
a/B	0.40	0.45	0.50	0.55	0.60	0.65	0.70
0.100	0.580	0.576	0.570	0.569	0.568	0.564	0.559
0. 125	0.752	0.723	0.703	0.705	0.699	0.700	0.693
0.150	0. 923	0.901	0.871	0.877	0.874	0,878	0.809
0.200	1.251	1.208	1.167	1.180	1.191	1.200	1.209
0.250	1.977	1.896	1.820	1.851	1.879	1.900	1.919
0.300	3.078	2.943	2.807	2.872	2.929	2.979	3.023
0.350	4.880	4.771	4.665	4.788	5.017	5.049	5.068
0.400	7.575	7.296	7.035	7.260	7.455	7.626	7.777
0.450	10.841	10.510	10.370	10.821	11.225	11.654	11.863
0.500	15.406	15.329	15.103	16.273	17.248	17.945	18.510
0.550	19.773	19.832	19.594	21.435	22.932	24.061	25.122
0.600	26.025	26.944	24.495	30.745	33.685	36.280	38.502
0.650	35.470	36.570	37.588	42.747	47.957	51.955	57.190
0.700	51.278	57.918	60.911	70.669	80.656	90.835	99.868
0.750	71.198	81.073	89.904	109.40	131.05	151.77	177.07
0.800	152.564	182.68	211.65	272.98	338.76	414.65	494.48

(n=10)

				θ/π			
a/B	0.05	0.10	0.15	0.20	0.25	0.30	0.35
0.100	0.430	0.549	0.599	0.613	0.617	0.612	0.608
0.125	0.580	0.755	0.875	0.915	0.919	0.909	0.899
0.150	0.730	0.960	1.133	1.200	1.240	1,262	1.262
0.200	0.954	1.400	1.715	1.875	1.911	1.915	1.894
0.250	1.206	2.010	2,525	2,920	3.140	3.160	3. 141
0.300	1.480	2.840	4.014	4.826	5.120	5,210	5. 231
0.350	2.100	4.150	5.800	7.350	8.550	9.200	9.400
0.400	2.900	5.700	8.588	11.000	13.341	15.100	16.150
0.450	4.445	8,650	12.955	17.055	20.909	24.520	27.640
0.500	6.720	13.570	20.400	27.200	34, 352	41.550	48.150
0.550	7.329	14.800	23, 100	34.007	46.000	58,050	72, 100
0.600	8,040	16.240	27.050	41.950	59, 937	78, 336	103, 476
0.650	9, 181	20, 852	34, 732	53, 864	76, 959	99, 227	142, 173
0, 700	10,660	27. 592	45, 960	71, 275	101, 890	131, 395	178 462
0.750	12, 430	35, 720	59, 836	92, 050	126,000	162, 170	230, 736
0.800	15, 230	45 271	86.057	135 996	183 140	208 219	340 498
				A/m			
a/B				U/ X			
	0.40	0.45	0.50	0.55	0.60	0.65	0.70
0.100	0.604	0.600	0.597	0.593	0.589	0.585	0.581
0.125	0.889	0.879	0.869	0.859	0.849	0.839	0.829
0.150	1.248	1.229	1,209	1.186	1.170	1.151	1. 131
0.200	1.872	1.851	1.830	1.808	1.787	1.766	1.744
0.250	3. 122	3.103	3.083	3.064	3.045	3.026	3.007
0.300	5.252	5.274	5.296	5.317	5.339	5.360	5. 381
0.350	9.670	9.820	10.050	10.140	10.280	10.420	10.560
0.400	17.180	18.100	19.100	19.850	20.480	21.120	22.050
0.450	30.400	33.760	36.850	39.550	42.070	44.800	47.150
0,500	55.950	63. 600	71.110	78.390	85.660	92.940	100.25
0.550	89.040	101.10	118.50	132.60	150.50	170.20	189.90
0.600	133.47	172.43	240.60	262.00	339.40	402.00	480.20
0.650	182.20	258.30	357.00	490.20	670.00	889.00	1 150.0
0.700	244.56	334.29	474.63	768.72	1 181.8	1 851.8	2 854.7
0.750	348.47	546.32	878.52	1 741.8	3 218.7	4 980.8	6 552.2
0.800	568.38	970.86	1 724.2	3 624.7	6 988.8	11 407.3	18 691.3

F. 12.2 容器内表面全周长环向裂纹全塑性解 H(R_i/t=10)

a/B	n=1	n=2	n=3	n=5	n=7	n=10	n=20
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.05	0.241	0.270	0.308	0.400	0.500	0.690	1.300
0.10	0.519	0.586	0.696	0.879	1.039	1,280	2.000
0.15	0.854	0.900	1.200	1.350	1.800	1.900	2.400
0,20	1.262	1.300	1.520	1.820	2.000	2.200	2.600
0.25	1.764	1.783	2.030	2.310	2.433	2.470	2.650
0.30	2, 380	2.450	2.800	2.840	2.770	2.640	2.690
0.35	3.133	3.200	3.500	3.390	3.000	2.830	2.720
0.40	4.053	3,950	4.240	3.880	3.220	3.000	2.780
0.45	5.170	4.840	5.000	4.300	3.400	3.100	2.790
0.50	6.522	5.900	5.630	4.510	3.490	3.250	2.790
0.55	8.153	6.900	6.190	4.600	3.640	3.300	2.800
0.60	10.114	8.000	6.650	4.680	3.750	3.210	2.800
0.65	12.464	9.100	7.090	4.700	3.800	3.220	2.800
0.70	15.277	10.230	7.400	4.750	3.880	3, 220	2,800
0.75	18.635	11.500	7.680	4.790	3.920	3.250	2.800
0.80	22.640	12.700	7.860	4.800	3.970	3.300	2.820

F. 12.3 容器内表面超长轴向裂纹全塑性解 H(R_i/t=10)

a/B	n=1	n=2	n=3	n=5	n=7	<i>n</i> =10	n=20
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.050	0.233	0.320	0.425	0.535	0.714	1.764	1.288
0. 100	0.498	0.684	0.861	1.144	1.798	3.800	3.034
0. 125	0.653	0.897	1.225	1.590	2.517	5.021	4.236
0.150	0.830	1.140	1.616	2.250	3.427	6.324	5.618
0.200	1.273	1.748	2.715	4.000	5.820	10.178	9.045
0.250	1.882	2.584	4.135	6.000	8.990	14.521	13.760
0.300	2.731	3.750	6.000	9.125	12,920	21.035	25.000
0.325	3. 323	4.625	7.250	11.281	15.730	25.513	34.000
0.350	3.914	5.500	8.500	13.636	18.800	31.213	54.000
0.375	4.735	6.750	10.250	16.612	22.920	38.542	87.000
0.400	5.555	8.000	12.000	20.000	28.090	48.856	135.00
0.425	6.686	9.500	14.250	25.000	34.830	65.000	185.00
0.450	7.817	11.000	16.500	30.000	41.778	97.284	265.00
0.475	9.360	13.000	20.179	36.575	50.000	150.00	
0.500	10.903	15.000	23.858	43.150	68.500	240.16	
0.525	12.990	18.000	27.500	50.000	100.00	400.00	—
0.550	15.077	21.000	32.000	61.707	147.70	650.00	
0.575	17.872	24.500	37.000	75.000	200.00	1 075.0	
0.600	20.667	28.500	43.000	93.499	300.07	2 000.0	
0.625	24.376	32.500	50.000	120.00	450.00	3 900.0	
0.650	28.085	39.000	58.000	151.92	658.33	6 750.0	
0.700	37.840	51.500	80.000	269.61	1 635.8		—
0.750	50.563	68.042	113.77	538.23	4 813.9		
0.800	67.022	89.000	175.00	1 270,60	1 8171.0		

F. 12.4 容器内表面有限长轴向裂纹全塑性解 H(R_i/t=10)

					(n=2)	
/ D			a/2	с		
а/ Б	1/3	1/4	1/6	1/10	1/20	1/40
0.100	0.341	0.383	0. 431	0.476	0.534	0.592
0.125	0.410	0.462	0.524	0.636	0.686	0.774
0.150	0.478	0.610	0,621	0.785	0.859	0.981
0.200	0.617	0.754	0.869	1.121	1.297	1.501
0.250	0.772	1.012	1.178	1.495	1.902	2.218
0.300	0,955	1.210	1.542	2.053	2.750	3.219
0.325	1.092	1.420	1.809	2,505	3.387	3.970
0.350	1.206	1.590	2.090	2.954	4.025	4.722
0.375	1.379	1.774	2.502	3.600	4.938	5.797
0.400	1.527	2,007	2.901	4.243	5.850	6.872
0. 425	1.732	2.282	3.379	5.015	6.947	8.163
0.450	1.848	2,538	3.848	5.785	8.044	9.454
0.475	1.992	2.805	4.481	6.816	9.507	11.176
0.500	2.165	3.171	5.104	7.845	10.972	12.899
0.525	2.382	3.537	6.056	9.396	13.170	15.483
0.550	2.598	3.841	6.997	10.945	15.371	18.069
0.575	2.858	4.268	8.093	12.755	17.939	21.087
0.600	2.900	4.695	9.345	14.825	20.877	24.538
0.625	3.378	5.244	10.588	16.896	23.818	27.990
0.650	3.724	5.854	12.634	20.267	28.595	33.599
0.700	4.504	7.439	16.535	26.759	37.799	44.396
0.750	5.803	9.939	21.705	35.369	49.995	58.694
0.800	7.622	13.537	28.262	46.304	65.469	76.821

(n=3)

a/P			a/2	с		
	1/3	1/4	1/6	1/10	1/20	1/40
0.100	0.425	0.439	0.505	0.552	0.627	0.714
0.125	0.563	0.671	0.673	0.748	0.841	1.048
0.150	0.632	0.696	0.783	1.047	1.178	1.381
0.200	0.866	0.950	1.118	1.393	1.847	2.226
0.250	1.039	1.195	1.491	2.000	2.784	3.387
0.300	1.208	1.585	1.949	2.793	4.018	4.915
0.325	1.318	1.768	2.256	3.327	4.848	5.940
0.350	1.516	1.951	2.546	3,857	5.678	6.965
0.375	1.689	2.134	2.970	4.608	6.842	8.402
0.400	1.819	2.439	3.377	5.354	8.007	9.839
0.425	1.992	2,683	3.908	6.319	9.507	11.688
0.450	2.165	3.000	4.425	7.280	11.009	13.538
0.475	2. 339	3.293	5.306	8.867	13.466	16.563
0.500	2.598	3.574	6.167	10.449	15.926	19.590
0,525	2.772	3.953	7.003	12.013	18.363	22, 589
0.550	3.031	4.634	8.043	13.951	21.378	26.296
0.575	3. 378	5.244	9.194	16.106	24.731	30.417
0.600	3.638	6.000	10.579	18.697	28.758	35.365
0.625	4.071	6.890	12.196	21.723	33.459	41.139
0.650	4.504	8.049	14.043	25.187	38.838	47.741
0.700	5.717	10.610	19.140	34.733	53.643	65.905
0.750	7.276	14.268	26.986	49.425	76.401	93.809
0.800	9.276	19.144	41.257	76.110	117.694	144.413

GB/T 19624-2004

(n	-	5)	

/ D			a/2	c		<u></u>
a/B	1/3	1/4	1/6	1/10	1/20	1/40
0.100	0.502	0.552	0.586	0.644	0.771	0.915
0.125	0.665	0.732	0.743	0.822	1.044	1.266
0.150	0.725	0.798	0.896	1.089	1.454	1.788
0.200	0.966	1.078	1.290	1.772	2.543	3.174
0.250	1.169	1.463	1.709	2.523	3.787	4.760
0.300	1.429	1.829	2.344	3.719	5.741	7.243
0.325	1.559	2.012	2.915	4.763	7.427	9.380
0.350	1.732	2.156	3.459	5.797	9.113	11.520
0.375	1.819	2.439	3.998	6.852	10.840	13.710
0.400	1.992	2.805	4.523	7.904	12.570	15.900
0.425	2.165	3.087	5.538	9.841	15.720	19.880
0.450	2. 382	3.526	6.530	11.770	18.870	23.870
0.475	2.598	4.024	7.843	14.320	23.020	29.120
0.500	2.945	4.512	9.137	16.870	27.170	34.400
0.525	3. 205	5.219	10.480	19.530	31.500	39.800
0.550	3.551	6.243	12.810	24.080	38.900	49.200
0.575	4.071	7.380	15.460	29.300	47.300	59.800
0.600	4.623	8.975	19.150	36.500	59.100	75.000
0.625	5.652	11.270	24.500	46.800	76.000	96.000
0.650	6.844	13.993	30.800	59.300	96.000	121.000
0.700	11,235	24.046	54.400	105.000	171.000	216.000
0.750	21.021	46.819	108.200	211.000	342.000	431.000
0.800	47.032	108.438	255.000	499.000	808.000	1 018.000

(n = 7)

. / 12			a/2	с		
a/ D	1/3	1/4	1/6	1/10	1/20	1/40
0.100	0.856	0.925	0.954	1.028	1.218	1.440
0.125	1.010	1.106	1.169	1.322	1.662	2.008
0.150	1.126	1.296	1.414	1.686	2.227	2.728
0.200	1.386	1.672	2.050	2.620	3.720	4.626
0.250	1.602	2.039	2.653	3.842	5.704	7.145
0.300	1.906	2.406	3.440	5.352	8.172	10.272
0.325	2.079	2,691	4.023	6.446	9.942	12.510
0.350	2.237	2.980	4.648	7.640	11.879	14.960
0.375	2.449	3,391	5.505	9.254	14.481	18.240
0.400	2.714	3.907	6.584	11.283	17.750	22.370
0.425	3.065	4.584	7,996	13.936	22.020	27.750
0.450	3.551	5.233	9.424	16.670	26.420	33.300
0.475	4.071	6.734	12.485	22.360	35.550	44.800
0.500	5.197	9.051	17.238	31,220	49.730	62.700
0.525	6.458	11.125	21.710	39.700	63.400	79.800
0.550	8.958	15.927	31.780	58.590	93.700	118.000
0.575	11.448	20.975	42.720	79.300	126.900	159.800
0.600	16.288	30.703	63.690	119.000	190.600	240,000
0.625	23.267	45.047	95.000	178.500	286.000	360.000
0.650	32.556	64.636	138.400	261.300	419.000	527.000
0.700	74.827	155.500	341.900	650.000	1 043,000	1 310.000
0.750	206.387	446.337	1 002.600	1 918.000	3 074.000	3 860.000
0.800	738.377	1 653.025	3 779.000	7 257.000	11 625.000	14 585.000

附录G

(规范性附录)

压力管道直管段平面缺陷安全评定方法

G.1 总则

本附录给出了在内压、拉压、弯矩为主的组合载荷作用下,含裂纹、未熔合、未焊透等平面缺陷的钢 制压力管道直管段的安全评定方法。

G.2 符号

下列符号用于本附录,未规定者按本标准第3章的规定。

 K_{eff} 有效应力强度因子,N/mm^{3/2};

- K_{\parallel} 撕裂型应力强度因子,N/mm^{3/2};
- L^F 起裂时的 L_r 值,无量纲;
- $M_{\rm B}$ 缺陷处不考虑缺陷存在时外载荷引起的弯矩, kNm;
- M。 缺陷处不考虑缺陷存在时外载荷引起的扭矩,kNm;
- N 轴向拉力,kN;
- n_p 规定按载荷取的安全系数,无量纲;
- U U 因子,为塑性极限载荷与起裂断裂载荷之比,无量纲;
- θ 缺陷周长包角为之半角, rad;
- θ/π 缺陷的无因次长度,即周向缺陷长度与管周长之比值,无量纲;
- [σ] 许可流变应力比,即周向缺陷管道塑性极限载荷应力($\sigma_m + \sigma_B$)_L 与材料流变应力 σ 值之 比,无量纲。
- G.3 轴向平面缺陷的评定

轴向平面缺陷,应按本标准正文第5章或第6章的规定进行评定。

- G.4 环向平面缺陷的评定⁶⁾
- G.4.1 材料性能数据确定的特殊规定
 - a) 材料拉伸性能 σ, 及 σ_b:对焊缝取母材与焊缝材料二者的较低值。
 - b) 评定用材料断裂韧度的下限值(*J*_{IC})_{FR}可取 1.1*A*_{KV},对未焊透缺陷可取 2.2*A*_{KV}⁷,也可根据评 定者过去使用该种材料的历史经验决定。
 - c) 在缺乏在役材料的 A_{κν}数据的情况下,如评定者能判断该材料适用于压力管道,且在使用状况 下无脆化倾向,使用温度不低于韧脆转变温度,则在评定计算时可取压力管道材料容许的最低 值 A_{κν}=27 J。
 - d) 在使用上述断裂韧度值进行评定不能获得保证安全的结论时,可通过实物取样实测 A_{κν}值或 断裂韧度值,重新评定。
 - 6) 对在使用工况下无脆化倾向的 20 # 或奥氏体不锈钢管道及壁厚不大于 13 mm 的 16 Mn 管道的未焊透缺陷允 许采用附录 H 进行评定。
 - 7) 由 A_{KV} 估算 J_{IC} 下限值时, J_{IC} 的单位为 N/mm, A_{KV} 的单位为 J。

- e) 断裂韧度 J_{ic}的测定:对大直径的厚壁管,可按本标准的有关规定进行;对小直径的薄壁管,在 取样不能满足测试试件厚度要求时,可用该管材制备周向穿透裂纹的管段试件在四点弯曲加 载下进行实测。
- f) 评定计算用 Kc 值,可由 Jrc 值按下式进行估算:

$$K_{\rm C} = \sqrt{E J_{\rm IC} / (1 - \nu^2)}$$
 (G.1)

G.4.2 U因子评定法

G.4.2.1 应力的计算

根据管系应力分析确定缺陷处管道横截面的弯矩 $M_{\rm B}$ 、拉力 N 和内压 p,按下式计算评定所需的轴向膜应力 $\sigma_{\rm m}$ 及弯曲应力 $\sigma_{\rm B}$:

$$\sigma_{\rm m} = \frac{N + \pi R_{\rm i}^2 p}{2\pi RB} \tag{G.2}$$

$$\sigma_{\rm B} = \frac{M_{\rm B}}{\pi R^2 B} \tag{G.3}$$

G.4.2.2 起裂时载荷比 L^F的确定

计算 $\sigma_s \sqrt{B}/K_c$,并根据 $\sigma_s \sqrt{B}/K_c$ 、缺陷无因次长度 θ/π 值和相对深度 a/B 值,由表 G.1 查得 L_t^F 值。

G.4.2.3 U因子值的计算

$$U = \frac{\sigma_{\rm s} + \sigma_{\rm b}}{2L_{\rm c}^{\rm F}\sigma_{\rm s}} \tag{G.4}$$

当U<1时,取U=1。

G. 4. 2. 4 许可流变应力比[σ]的确定

由缺陷尺寸 θ/π 值及 a/B 值,由表 G.2 查得[$\bar{\sigma}$]。

表 G.2 许可流变应力比[ō]

- / P		$ heta/\pi$												
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0				
0.1	1. 254	1.236	1. 221	1.211	1.206	1.206	1.206	1.206	1.206	1.206				
0.2	1.234	1.196	1.165	1.143	1.131	1.129	1.129	1.129	1.129	1.129				
0.3	1. 213	1, 156	1.107	1.07	1.048	1.041	1.041	1.041	1.041	1.041				
0.4	1, 193	1.114	1.045	0.992	0.957	0.942	0.942	0.942	0.942	0.942				
0.5	1.172	1.071	0.981	0.909	0.858	0.832	0.827	0.827	0.827	0.827				
0.6	1.15	1.027	0.914	0.821	0.753	0.712	0, 697	0.697	0.697	0.697				
0.7	1.128	0.981	0.844	0.729	0.64	0. 583	0.554	0. 549	0.549	0.549				

G.4.3 安全性评价

如果公式(G.5)所表述的判据成立,则评定结论为安全或可以接受;否则,为不能保证安全或不可 接受。

$$(\sigma_{\rm m} + \sigma_{\rm B}) \leqslant \left(\frac{\sigma_{\rm s} + \sigma_{\rm b}}{2}\right) \frac{[\bar{\sigma}]}{Un_{\rm p}} \tag{G.5}$$

a/B	0.1	0.2	0.3	0.4	0.5	0.6	0.7	L ^F _r
	25.1113	17.1963	13.4496	11.0814	9.3929	8.111	7.1012	0.05
	12.5425	8.5891	6.7177	5.5349	4.6915	4.0512	3, 5469	0.10
	8.347	5.716	4.4706	3.6835	3.1222	2.6961	2.3604	0.15
	6.2447	4.2764	3.3446	2.7557	2.3358	2.017	1.7659	0.20
	4.9795	3.41	2.667	2.1974	1.8626	1.6084	1.4082	0.25
	4.1326	2.83	2.2134	1.8237	1.5458	1.3348	1.1686	0.30
	3. 5241	2. 4133	1.8875	1.5552	1.3182	1.1383	0.9966	0.35
	3.064	2.0982	1.6411	1.3521	1, 1461	0.9897	0.8665	0.40
	2.7018	1.8502	1.4471	1.1923	1.0106	0.8727	0.764	0.45
	2.4069	1.6483	1.2892	1.0622	0.9003	0.7774	0.6807	0.50
	2.1596	1.4789	1.1567	0.953	0.8078	0.6976	0.6107	0.55
	1.8642	1.2867	1.0108	0.8345	0.7088	0.6139	0.5391	0.60
	1.5949	1.1108	0.8773	0.726	0.6181	0.5373	0.4736	0.65
	1.3454	0.9466	0.7522	0.6242	0.533	0.4654	0, 4122	0.70
	1.1195	0.7958	0.6365	0. 5298	0.4538	0.3982	0.3545	0.75
	0.9201	0.6605	0.5315	0.4438	0.3813	0.3363	0.301	0.80
	0.7483	0.5417	0.4384	0.367	0.3163	0.2803	0. 2521	0.85
	0.6032	0. 4397	0.3576	0.3001	0.2592	0.2307	0.2085	0.90
	0.4826	0.3538	0.2888	0.2428	0.2102	0.1877	0, 1703	0.95
	0, 3836	0.2824	0.2312	0.1947	0.1688	0.1512	0.1376	1.00
	0.3037	0.2242	0.184	0.1551	0.1347	0.1208	0.1103	1.05
	0.2402	0.1778	0.1461	0.1233	0.1071	0.0963	0.088	1.10
	0.1912	0.1417	0.1166	0.0984	0,0856	0.077	0.0705	1.15
	0.1546	0.1147	0.0944	0.0798	0.0694	0.0625	0.0572	1.20
$\sigma_s \sqrt{B}$	0.1283	0.0953	0.0785	0.0663	0.0577	0.0519	0.0476	1.25
<u>K</u> c	0.1101	0.0818	0.0674	0.0569	0.0496	0.0446	0.0409	1.30
	0.0978	0.0726	0.0599	0.0506	0.044	0.0397	0.0364	1.35
	0,0891	0.0662	0.0546	0.0461	0.0401	0.0362	0.0332	1.40
	0.0825	0.0613	0.0505	0.0427	0.0372	0.0335	0.0307	1.45
	0.077	0.0572	0.0472	0.0399	0.0347	0.0313	0.0287	1.50
	0.072	0.0535	0.0441	0.0373	0.0324	0.0292	0.0268	1.55
	0.0673	0.05	0.0413	0.0349	0.0303	0.0274	0.0251	1.60
	0.0629	0.0467	0.0385	0.0326	0. 0283	0.0256	0.0234	1.65
	0.0586	0.0436	0.0359	0.0304	0.0264	0.0238	0.0219	1.70
	0.0546	0.0406	0.0335	0.0283	0.0246	0.0222	0.0204	1.75
	0.0507	0.0377	0.0311	0.0263	0.0229	0.0206	0.0189	1.80
	0.0469	0.0349	0.0288	0.0243	0.0212	0.0191	0.0175	1.85
	0.0433	0.0322	0.0266	0.0225	0.0196	0.0176	0.0162	1.90
	0.0399	0.0297	0.0245	0.0207	0.018	0.0162	0.0149	1.95
ł	0.0365	0.0272	0.0224	0.0189	0.0165	0.0149	0.0136	2.00
	0.0333	0.0248	0.0204	0.0173	0.015	0.0136	0.0124	2.05
	0.0302	0.0224	0.0185	0.0156	0.0136	0.0123	0.0113	2.10
	0.0272	0.0202	0.0167	0.0141	0.0123	0.0111	0.0102	2.15
	0.0242	0.018	0.0149	0.0126	0.0109	0.0099	0.0091	2.20
	0.0214	0.0159	0.0131	0.0111	0.0097	0.0087	0.008	2.25
	0.0186	0.0138	0.0114	0.0097	0.0084	0.0076	0.007	2.30
	0.0159	0.0118	0.0098	0.0083	0.0072	0.0065	0.006	2.35
	0.0133	0.0099	0.0082	0.0069	0.006	0.0054	0.005	2.40
	0.0107	0.008	0.0066	0.0056	0.0048	0.0044	0.004	2.45
	0.0082	0.0061	0.005	0.0043	0.0037	0.0034	0.0031	2.50

表 G. 1a L_r^F 表($\theta/\pi = 0.1$)

a/B	0.1	0.2	0.3	0.4	0.5	0.6	0.7	$L_r^{\rm F}$
	25.2256	17.214	13.392	10.9914	9.3114	8.0714	7.1289	0.05
	12.5995	8.598	6.689	5.4899	4.6508	4.0315	3.5607	0.10
	8.3849	5.7219	4.4515	3.6535	3.0951	2.6829	2.3696	0.15
	6. 2731	4.2808	3.3303	2.7333	2.3156	2.0072	1.7728	0.20
	5.0022	3.4135	2.6556	2.1796	1.8464	1.6005	1,4136	0.25
	4.1514	2.8329	2.2039	1.8089	1.5324	1.3283	1.1732	0.30
	3.5401	2.4158	1.8794	1.5425	1.3068	1.1327	1.0005	0.35
	3.0779	2.1004	1.634	1.3411	1.1361	0.9848	0.8698	0.40
	2.7141	1.8521	1.4409	1.1826	1.0018	0.8684	0.767	0.45
	2.4179	1.65	1.2836	1.0535	0.8925	0.7737	0.6833	0.50
	2.1695	1.4805	1.1517	0.9453	0.8008	0.6942	0.6131	0.55
	1.8664	1.2918	1.011	0.8366	0.7127	0.6216	0.5496	0.60
	1.5907	1.1191	0.8822	0.7375	0.6327	0.5565	0.4927	0.65
	1.3363	0.9576	0.7614	0.6445	0.558	0.4961	0.4401	0.70
	1.1073	0.8085	0.6487	0.557	0. 4874	0.4392	0.3905	0.75
	0.9067	0.6737	0.5455	0.4752	0. 4208	0.385	0.3433	0.80
	0.735	0.5546	0.4529	0.4001	0.3584	0.3334	0.2983	0.85
	0.591	0.4516	0.3714	0. 3323	0.3011	0.2847	0.2556	0.90
	0.4718	0.3642	0.3013	0, 2725	0.2494	0.2395	0.2157	0.95
	0.3745	0. 2913	0.2421	0.2209	0.2039	0.1985	0.1793	1.00
	0.2961	0. 2317	0.1932	0.1775	0.1649	0.1624	0.147	1.05
	0.2341	0.1839	0.1537	0.1419	0.1325	0.1317	0.1195	1.10
	0.1862	0.1467	0.1229	0.1138	0.1067	0.1066	0.0969	1.15
	0.1505	0.1187	0.0996	0.0925	0.0869	0.0872	0.0793	1.20
$\sigma_{s}\sqrt{B}$	0.1249	0.0987	0.0828	0.077	0.0724	0.073	0.0664	1.25
K _c	0.1072	0.0847	0.0711	0.0662	0.0624	0.0629	0.0573	1.30
	0.0951	0.0752	0.0632	0.0588	0.0554	0.056	0.051	1.35
2	0.0867	0.0686	0.0576	0.0537	0.0506	0.0511	0.0466	1.40
	0.0803	0.0635	0.0534	0.0497	0.0469	0.0474	0.0432	1.45
	0.0749	0.0593	0.0498	0.0464	0.0438	0.0443	0.0403	1.50
	0.0701	0.0554	0.0466	0.0434	0.0409	0.0414	0.0377	1.55
	0.0655	0.0518	0.0436	0.0406	0.0383	0.0388	0.0353	1.60
	0.0612	0.0484	0.0407	0.0379	0.0358	0.0362	0.033	1.65
	0.0571	0.0452	0.038	0.0354	0,0334	0.0338	0.0308	1.70
	0.0531	0,042	0.0353	0.033	0,0311	0.0315	0.0287	1.75
	0.0493	0.039	0.0328	0.0306	0.0289	0.0293	0.0267	1.80
	0.0457	0.0362	0.0304	0.0284	0.0268	0.0271	0.0247	1.85
	0.0422	0.0334	0.0281	0.0262	0.0247	0.0251	0.0229	1.90
	0.0388	0.0307	0.0258	0.0241	0.0228	0.0231	0.021	1.95
	0.0355	0.0282	0.0237	0.0221	0.0209	0.0212	0.0193	2.00
	0.0324	0.0257	0.0216	0.0201	0.019	0.0193	0.0176	2.05
	0.0294	0.0233	0.0196	0.0183	0.0172	0.0175	0.016	2.10
	0.0264	0,0209	0.0176	0.0164	0.0155	0.0158	0.0144	2.15
	0.0236	0.0187	0.0157	0.0147	0.0139	0.0141	0.0128	2.20
	0.0208	0.0165	0.0139	0.0129	0.0122	0.0124	0.0113	2.25
	0.0151	0.0143	0.0121	0.0113	0.0106	0.0108	0.0099	2.30
	0.0155	0.0123	0.0103	0.0096	0.0091	0.0093	0.0084	2.35
	0.0129	0.0102	0.007	0.008	0.0076	0.0077	0.0071	Z. 40
	0.0104	0.0083	0.007	0,0065	0,0061	0.0062	0.0057	Z. 45
	0.008	0.0063	0.0053	0.005	0.0047	0.0048	0.0044	2.50

表 G. 1b L_r^F 表($\theta/\pi = 0.2$)

a/B	0.1	0.2	0.3	0.4	0.5	0.6	0.7	L_r^F
	25. 3213	17.2695	13. 4473	11.0941	9.5025	8.3856	7.5987	0.05
	12.6473	8.6257	6.7166	5.5412	4.7463	4.1884	3.7953	0.10
	8.4168	5.7403	4.4698	3.6877	3. 1586	2.7873	2.5258	0.15
	6.2969	4.2946	3.3441	2.7589	2, 3631	2.0853	1.8896	0.20
	5.0211	3. 4245	2.6666	2.1999	1.8843	1.6628	1.5068	0.25
	4.1671	2.842	2.213	1.8258	1.5638	1.38	1.2505	0.30
	3.5536	2.4236	1.8872	1.5569	1.3336	1.1768	1.0664	0.35
	3.0896	2.1071	1.6408	1.3536	1.1595	1.0232	0.9272	0.40
	2.7244	1.8581	1.4468	1.1936	1.0224	0.9022	0.8176	0.45
	2. 4271	1.6553	1.2889	1.0634	0.9108	0.8038	0.7283	0,50
	2.1777	1. 4852	1.1565	0.9541	0.8172	0.7212	0.6535	0.55
	1.8654	1.2953	1.0209	0.85	0.7342	0.6496	0.5901	0.60
	1. 5822	1, 1215	0.8969	0.7557	0.66	0.586	0.5341	0.65
	1. 3223	0.959	0.7806	0.6676	0.5918	0.5281	0.4836	0.70
	1.0903	0.8091	0.6713	0.5843	0.5277	0.4741	0.4369	0.75
	0.8887	0.6737	0.57	0.5057	0,4668	0.4227	0.3928	0,80
	0.7178	0.5543	0.4775	0. 4318	0.4083	0.3733	0.3502	0.85
	0.5754	0.4511	0.3948	0.3636	0.3524	0.3255	0.3089	0.90
	0.4583	0.3636	0.3225	0.3018	0.2996	0.2797	0.2687	0.95
	0.3632	0.2908	0.2606	0.2472	0.2507	0.2366	0.2301	1.00
	0. 2868	0.2312	0.2089	0.2003	0.2068	0.197	0. 1938	1.05
	0.2265	0.1834	0.1667	0.1611	0.1688	0.162	0.161	1.10
	0.1801	0.1463	0.1335	0.1298	0.1374	0.1327	0.1329	1.15
	0.1455	0.1184	0.1084	0.1058	0. 1128	0.1094	0.1102	1.20
$\sigma_s \sqrt{B}$	0.1207	0.0984	0.0902	0,0882	0.0946	0.092	0.093	1.25
K _c	0.1036	0.0845	0.0775	0.076	0,0817	0.0796	0.0807	1.30
	0.0919	0.075	0.0689	0.0676	0.0728	0.071	0.0721	1, 35
	0.0838	0.0684	0.0628	0.0616	0.0665	0.0649	0.0659	1.40
	0.0776	0.0634	0.0582	0.0571	0.0616	0.0602	0.0612	1.45
	0.0724	0.0591	0.0543	0.0533	0.0576	0.0562	0.0572	1.50
	0.0677	0.0553	0.0508	0.0499	0.0539	0.0527	0.0536	1.55
	0.0633	0.0517	0.0475	0.0467	0.0504	0,0493	0,0502	1.60
	0.0591	0.0483	0.0444	0.0436	0.0472	0.0461	0.047	1.65
	0.0551	0.045	0.0414	0.0407	0.044	0.0431	0.0439	1.70
	0.0513	0.0419	0.0386	0.0379	0.041	0.0401	0.0409	1.75
	0.0476	0.0389	0.0358	0.0352	0,0381	0.0373	0.0381	1.80
	0.0441	0.0361	0.0332	0.0326	0.0353	0.0346	0.0353	1.85
	0.0407	0.0333	0.0306	0.0301	0.0327	0.032	0.0327	1.90
	0.0375	0.0306	0.0282	0.0277	0.0301	0.0295	0.0301	1.95
	0.0343	0.0281	0.0258	0.0254	0.0276	0.027	0.0276	2.00
	0.0313	0.0256	0.0236	0.0232	0.0252	0.0247	0.0252	2.05
	0.0284	0.0232	0.0214	0.021	0.0228	0.0224	0.0229	2.10
	0.0255	0.0209	0.0192	0.0189	0.0206	0.0202	0.0206	2.15
	0.0228	0.0186	0.0171	0.0169	0.0184	0.018	0.0184	2,20
	0.0201	0.0164	0.0151	0.0149	0.0162	0.0159	0.0163	2.25
	0.0175	0.0143	0.0132	0,013	0.0141	0.0139	0.0142	2.30
	0.015	0.0122	0.0113	0.0111	0.0121	0.0119	0.0121	2.35
	0.0125	0.0102	0.0094	0.0093	0.0101	0.0099	0.0102	2.40
	0.0101	0.0082	0.0076	0.0075	0.0082	0.008	0.0082	2.45
	0.0077	0.0063	0.0058	0.0057	0.0063	0.0061	0.0063	2.50

表 G. 1c L_r^r 表 ($\theta/\pi = 0.3$)

	0.1	0.2	0.3	0.4	0.5	0, 6	0.7	LF
	25, 3493	17, 2702	13, 4786	11.2119	9,7565	8,8274	8, 2947	0.05
	12,6613	8,626	6.7322	5,6001	4.8731	4, 4091	4, 143	0.10
	8, 4261	5.7406	4, 4803	3, 7268	3, 243	2.9342	2,7571	0.15
	6, 3039	4, 2948	3, 3519	2,7882	2.4262	2, 1952	2.0627	0.20
	5.0267	3, 4246	2.6728	2, 2233	1, 9347	1.7504	1.6448	0, 25
	4. 1717	2.8422	2.2182	1.8451	1.6056	1.4527	1.3651	0.30
	3.5575	2.4237	1.8916	1.5735	1.3692	1.2388	1.1641	0.35
	3.093	2.1072	1,6446	1.368	1.1904	1.0771	1.0121	0.40
	2.7274	1.8581	1.4502	1,2063	1.0497	0.9498	0.8924	0.45
1	2.4298	1.6554	1,2919	1.0747	0.9352	0.8461	0.7951	0.50
	2, 1801	1.4853	1,1592	0.9643	0.8391	0.7592	0.7134	0.55
Ę	1.8764	1.2998	1.0285	0.8636	0.7569	0.6868	0.6463	0.60
	1.6001	1. 1299	0.9095	0.7732	0.6843	0.6234	0.5879	0.65
	1.345	0.9708	0.7979	0.6894	0.6184	0.5666	0.536	0.70.
	1.1151	0.8232	0.6927	0.6104	0.5573	0.5146	0.4888	0.75
	0.9136	0.6888	0.594	0.5353	0.4993	0.4657	0.4449	0.80
	0.741	0.5693	0.5026	0.4637	0.4435	0.4189	0.4031	0.85
	0.596	0.4651	0.4194	0.3961	0.3894	0.3733	0.3625	0.90
	0,4759	0.3761	0.3454	0.3334	0.337	0.3285	0.3225	0.95
	0.3779	0.3014	0.2809	0.2764	0.287	0.2848	0.2828	1.00
	0.2988	0.2401	0.2263	0, 2261	0.2406	0.2428	0.2441	1.05
	0.2362	0.1908	0.1813	0.1834	0.199	0.204	0.2075	1.10
	0.1879	0.1523	0.1456	0.1485	0.1637	0.1699	0.1746	1.15
	0.1519	0.1234	0.1184	0. 1215	0.1354	0.1419	0.1469	1.20
$\sigma_s \sqrt{B}$	0.126	0.1025	0.0987	0.1016	0.1141	0.1203	0.1253	1.25
Kc	0.1082	0.0881	0.0849	0.0877	0.0988	0.1046	0.1094	1.30
	0.096	0.0782	0.0754	0.078	0.0882	0.0936	0.0981	1.35
	0.0875	0.0713	0.0688	0.0712	0.0807	0.0858	0.0899	1.40
	0.0811	0.066	0.0638	0.066	0.0749	0.0797	0.0836	1.45
	0.0756	0.0616	0.0595	0.0617	0.07	0.0745	0.0783	1.50
	0.0707	0.0576	0.0557	0.0577	0.0656	0.0699	0.0734	1.55
	0.0661	0.0539	0.0521	0.054	0.0614	0.0655	0.0689	1.60
	0.0618	0.0504	0.0487	0.0505	0.0574	0.0613	0.0645	1.65
	0.0576	0.047	0.0454	0.0471	0.0536	0.0573	0.0603	1.70
	0.0536	0.0437	0,0423	0.0439	0.05	0.0534	0.0563	1.75
	0.0498	0.0406	0.0393	0.0408	0.0465	0.0497	0.0525	1.80
	0.0461	0.0376	0.0364	0.0378	0.0431	0.0462	0,0487	1.85
	0.0426	0.0347	0.0336	0.0349	0.0399	0.0427	0.0451	1.90
	0.0392	0.032	0.0309	0.0322	0.0368	0,0394	0.0416	1,95
	0.0359	0.0293	0.0283	0.0295	0.0337	0.0362	0.0383	2.00
	0.0327	0.0267	0.0259	0.0269	0.0308	0.033	0.035	2.05
	0.0296	0.0242	0.0234	0.0244	0.0279	0.03	0.0318	2.10
	0.0267	0.0218	0.0211	0.022	0.0252	0.0271	0.0287	2.15
	0.0238	0.0194	0.0188	0.0196	0.0225	0.0242	0,0256	2.20
	0.021	0,0171	0.0166	0.0173	0.0199	0.0214	0.0227	2.25
	0.0183	0.0149	0.0145	0.0151	0,0173	0.0186	0,0198	2.30
	0.0156	0.0128	0.0124	0.0129	0.0148	0.016	0.0169	2.35
	0.0131	0.0107	0,0103	0.0108	0.0124	0.0133	0.0142	2.40
	0.0105	0.0086	0.0083	0.0087	0.01	0.0108	0.0115	2.45
L	0.0081	0.0066	0.0064	0.0067	0.0077	0,0083	0.0088	2.50

表 G. 1d L_r^F 表($\theta/\pi=0.4$)

a/B	0.1	0.2	0.3	0.4	0.5	0.6	0.7	L ^F _r
	25.2804	17.1618	13.404	11.2332	9.9319	9.229	9.0383	0,05
	12.6269	8.5719	6.695	5.6107	4.9607	4.6097	4.5144	0.10
	8.4032	5.7046	4.4555	3.7339	3.3013	3.0677	3.0043	0.15
	6.2867	4.2678	3, 3333	2, 7935	2.4699	2.2951	2.2476	0.20
	5.013	3.4031	2.658	2. 2275	1.9695	1.8301	1.7923	0.25
	4.1604	2.8243	2.2059	1.8486	1.6345	1.5188	1.4874	0.30
	3. 5478	2.4085	1.8811	1.5765	1.3938	1.2952	1.2684	0.35
	3.0846	2.094	1.6355	1.3706	1.2118	1.1261	1.1028	0.40
	2.72	1.8465	1.4422	1.2086	1.0686	0.993	0.9725	0.45
	2. 4232	1.645	1.2848	1.0767	0.952	0.8846	0.8663	0.50
	2.1742	1.476	1.1528	0.9661	0.8542	0.7937	0.7773	0.55
	1.8786	1. 2937	1.0239	0.8669	0.7727	0.7194	0.7053	0.60
	1.609	1.1268	0.9068	0.778	0.7014	0.6547	0.6429	0.65
	1.359	0.9703	0.797	0.6962	0.6375	0.5975	0.588	0.70
	1.1321	0.8248	0.6935	0.6191	0.5789	0.5456	0.5386	0.75
	0.9316	0.6919	0.5961	0.5457	0.524	0.4974	0.4932	0.80
	0.7584	0.5731	0.5056	0: 4756	0.4713	0.4517	0.4504	0.85
	0.6118	0.4691	0.4229	0.4088	0.42	0.4073	0.4092	0.90
	0.4897	0.38	0.3489	0.3461	0.3696	0.3635	0.3686	0,95
	0.3895	0.305	0.2843	0. 2885	0.3204	0.3201	0.328	1.00
	0.3084	0.2431	0.2293	0.2372	0.2732	0.2774	0.2877	1.05
	0.2441	0.1933	0.184	0. 1931	0. 2295	0.2368	0.2485	1.10
	0.1943	0.1544	0.1478	0.1569	0.1912	0.1999	0. 2121	1.15
	0.1571	0.1251	0, 1203	0.1286	0.1596	0.1687	0.1806	1.20
$\sigma_{ m s} \sqrt{B}$	0.1304	0.104	0.1002	0.1077	0.1353	0.1441	0.1553	1.25
K _c	0.1119	0.0893	0.0863	0.0929	0.1177	0.126	0.1364	1,30
	0.0994	0.0794	0.0767	0.0828	0.1054	0.1131	0.1228	1.35
	0.0906	0.0723	0.0699	0.0756	0.0965	0.1038	0.1128	1.40
	0.0839	0.067	0.0648	0.0701	0.0896	0.0965	0,1051	1.45
	0.0783	0.0625	0.0605	0.0655	0.0839	0.0904	0.0985	1.50
	0.0732	0.0585	0.0566	0,0613	0.0786	0.0848	0.0925	1.55
	0.0684	0.0547	0.053	0.0573	0.0737	0.0796	0.0868	1.60
	0.0639	0.0511	0.0495	0.0536	0.069	0.0745	0.0814	1.65
	0.0596	0.0477	0.0462	0.05	0.0645	0.0697	0.0763	1.70
	0.0555	0.0444	0.043	0.0466	0.0601	0.0651	0.0713	1.75
	0.0515	0.0412	0.0399	0.0433	0.056	0.0607	0.0665	1.80
	0.0477	0.0382	0.037	0.0402	0.052	0.0564	0.0618	1.85
	0.0441	0.0352	0.0342	0.0371	0.0481	0.0522	0.0573	1.90
	0.0405	0.0324	0.0315	0.0342	0.0443	0.0482	0.0529	1.95
	0.0371	0.0297	0.0288	0.0313	0.0407	0.0443	0.0487	2.00
	0.0339	0.0271	0,0263	0.0286	0.0372	0.0405	0.0445	2.05
	0.0307	0.0246	0.0238	0.0259	0.0338	0.0368	0.0405	2.10
	0.0276	0.0221	0.0215	0.0234	0.0304	0.0332	0.0366	2.15
	0.0246	0.0197	0.0191	0.0208	0.0272	0.0297	0.0327	2.20
	0.0217	0.0174	0.0169	0.0184	0.024	0.0263	0.029	2.25
	0.0189	0.0151	0.0147	0.016	0.021	0.0229	0.0253	2.30
	0.0162	0.013	0.0126	0.0137	0.0179	0.0196	0.0217	2.35
	0.0135	0.0108	0.0105	0.0115	0.015	0.0164	0.0182	2.40
	0.0109	0.0087	0.0085	0.0093	0.0121	0.0133	0,0147	2.45
	0.0084	0.0067	0.0065	0.0071	0.0093	0.0102	0.0113	2.50

表 G. 1e L_r^F 表 ($\theta/\pi = 0.5$)

a/B	0.1	0.2	0.3	0.4	0.5	0.6	0.7	L ^F _r
	25.1365	16.9375	13.1852	11.0953	9.9336	9.4488	9.6254	0.05
	12.5551	8.4599	6.5857	5.5418	4.9616	4.7195	4.8076	0.10
	8.3553	5.63	4.3827	3.6881	3.3019	3.1408	3.1995	0.15
	6.251	4.212	3.2789	2.7592	2.4703	2.3497	2.3936	0.20
	4.9845	3.3587	2.6146	2.2002	1.9698	1.8737	1.9087	0.25
	4.1367	2.7874	2.1699	1.826	1.6348	1.555	1.584	0.30
	3. 5276	2.377	1.8504	1.5571	1. 3941	1.326	1.3508	0.35
	3.067	2.0666	1.6088	1.3538	1.212	1.1529	1.1744	0.40
	2.7045	1.8223	1.4186	1.1938	1.0688	1.0166	1.0356	0.45
	2.4094	1.6235	1.2638	1.0635	0.9521	0.9057	0.9226	0.50
	2.1618	1.4567	1.134	0.9542	0.8543	0.8126	0.8278	0.55
	1.8716	1.2768	1.0074	0.8562	0.7729	0.7366	0.7518	0.60
	1.6065	1.1121	0.8924	0.7685	0.7015	0.6703	0.6861	0.65
	1.3603	0.9576	0.7847	0.6876	0.6376	0.6117	0.6286	0.70
	1.1361	0.814	0.683	0.6115	0.579	0.5586	0.5773	0.75
	0.937	0.6829	0.5873	0.5391	0.5241	0.5093	0.5305	0.80
	0.7643	0.5656	0.4984	0.4697	0.4714	0.4625	0.4869	0.85
	0.6176	0.463	0.417	0.4037	0. 4201	0.417	0.4452	0.90
	0.495	0.375	0.3442	0.3418	0.3697	0.3722	0.4043	0.95
	0.3941	0.301	0.2806	0.285	0. 3204	0.3277	0.3634	1.00
	0.3123	0.2399	0.2264	0.2343	0.2732	0.284	0. 3224	1.05
	0.2472	0.1908	0.1816	0.1907	0. 2295	0.2424	0.2819	1.10
	0.1969	0.1524	0.146	0.1549	0. 1912	0.2047	0. 2435	1.15
	0.1592	0.1235	0.1188	0.127	0. 1597	0.1727	0. 2094	1.20
$\sigma_s \sqrt{B}$	0.1322	0.1026	0.099	0.1064	0.1354	0.1476	0.1814	1.25
K _c	0.1135	0.0882	0.0852	0.0918	0.1178	0.129	0.1601	1.30
	0.1007	0.0783	0.0757	0.0818	0. 1054	0.1158	0.1446	1.35
	0.0918	0.0714	0.0691	0.0747	0.0965	0.1062	0.1332	1.40
	0,085	0.0661	0.064	0.0692	0.0897	0.0988	0.1242	1.45
	0.0794	0.0617	0.0598	0.0647	0. 0839	0.0926	0.1166	1.50
	0.0742	0.0577	0.0559	0.0605	0.0786	0.0868	0.1096	1.55
	0.0694	0,054	0.0523	0.0566	0.0737	0.0815	0.103	1.60
	0.0648	0.0504	0.0489	0.053	0.069	0.0763	0.0967	1.65
	0.0604	0,047	0.0456	0.0494	0.0645	0.0714	0.0906	1.70
	0.0563	0.0438	0.0425	0.046	0.0601	0.0667	0.0848	1.75
	0.0522	0.0407	0.0394	0.0428	0.056	0.0621	0.0792	1.80
	0.0484	0.0377	0.0365	0.0397	0.052	0.0577	0.0737	1.85
	0.0447	0.0348	0,0338	0.0367	0.0481	0.0535	0.0684	1.90
	0.0411	0.032	0,0311	0, 0338	0.0443	0.0493	0.0633	1.95
	0.0377	0.0293	0,0285	0.031	0.0407	0.0453	0.0582	2.00
	0.0343	0.0267	0.026	0.0282	0.0372	0.0415	0.0534	2.05
	0.0311	0.0242	0,0235	0.0256	0.0338	0.0377	0.0486	2.10
	0.028	0.0218	0.0212	0.0231	0.0304	0.034	0.0439	2.15
	0.025	0.0195	0.0189	0.0206	0.0272	0.0304	0.0393	2.20
	0.022	0.0172	0.0167	0.0182	0.024	0.0269	0.0349	2.25
	0.0192	0.0149	0.0145	0.0158	0.021	0.0235	0.0304	2.30
	0.0164	0,0128	0.0124	0,0135	0.018	0.0201	0.0261	2.35
	0.0137	0.0107	0.0104	0.0113	0.015	0.0168	0.0219	2.40
	0.0111	0.0086	0,0084	0.0091	0.0121	0,0136	0.0177	2.45
	0.0085	0.0066	0.0064	0.007	0, 0093	0.0104	0.0136	2.50

表 G. 1f L_r^r 表($\theta/\pi = 0.6$)

a/B	0.1	0.2	0.3	0.4	0.5	0,6	0.7	L ^F _r
	25.0011	16.7178	12.9342	10.8488	9.746	9.4141	9.8908	0.05
	12.4874	8.3501	6.4603	5.4187	4.8679	4.7021	4.9402	0.10
	8.3103	5.557	4.2993	3.6061	3.2396	3.1292	3. 2877	0.15
	6.2173	4.1574	3. 2165	2.6979	2.4236	2.3411	2.4597	0.20
	4.9577	3. 3151	2.5648	2.1513	1.9326	1.8668	1.9613	0.25
	4.1144	2.7512	2.1286	1.7854	1.6039	1.5493	1.6277	0.30
	3.5086	2.3462	1.8152	1.5225	1.3677	1.3212	1.3881	0.35
	3.0505	2.0398	1.5782	1. 3237	1.1892	1.1487	1.2068	0,40
	2.6899	1.7987	1.3916	1.1672	1.0486	1.0129	1.0642	0.45
	2.3964	1,6024	1.2398	1.0399	0.9342	0.9023	0.948	0.50
	2.1502	1.4378	1.1124	0.933	0.8382	0.8096	0.8506	0,55
	1.8633	1.2602	0.9883	0.8372	0.7583	0.7339	0.7726	0,60
	1.6013	1.0977	0,8756	0,7514	0.6884	0.6679	0.7052	0.65
	1.3575	0.9452	0.77	0.6723	0.6258	0.6094	0.6462	0.70
	1.1352	0.8035	0.6704	0.5979	0.5685	0.5565	0.5937	0.75
	0.9374	0.674	0.5766	0.5271	0.5148	0.5074	0.5459	0.80
	0.7654	0.5583	0.4894	0.4593	0.4633	0.4608	0.5013	0.85
	0.6191	0.457	0.4096	0.3948	0.4131	0.4155	0.4587	0.90
	0.4965	0.3701	0.3382	0.3342	0.3638	0.3708	0.417	0.95
	0.3955	0.2971	0.2757	0.2786	0.3156	0.3265	0.3754	1.00
	0.3135	0.2368	0.2225	0.2291	0, 2693	0.283	0.3336	1.05
	0, 2483	0,1883	0,1785	0.1865	0.2264	0.2415	0.2921	1.10
	0.1978	0.1504	0.1435	0.1515	0. 1887	0.2039	0.2528	1.15
	0.1599	0.1219	0.1168	0.1242	0.1576	0.1721	0.2177	1.20
$\sigma_{\rm s} \sqrt{B}$	0.1328	0.1013	0.0973	0, 104	0. 1337	0.147	0.1889	1.25
$K_{\rm c}$	0.114	0.087	0.0837	0.0898	0.1163	0.1285	0.1668	1.30
	0.1012	0.0773	0.0745	0.0799	0.1041	0.1154	0.1507	1.35
	0,0923	0.0705	0.0679	0.073	0.0954	0.1059	0.1389	1.40
	0.0854	0.0653	0.0629	0.0677	0.0886	0.0985	0.1296	1.45
	0.0797	0.0609	0.0587	0.0632	0.0829	0.0922	0.1216	1.50
	0.0746	0.057	0.055	0,0592	0.0777	0.0865	0.1143	1.55
	0.0697	0.0533	0.0514	0.0554	0.0728	0.0812	0.1075	1.60
	0,0651	0.0498	0.048	0.0518	0.0682	0.076	0.1009	1.65
	0.0607	0.0464	0.0448	0.0483	0.0637	0.0711	0.0946	1.70
	0.0565	0.0432	0.0417	0.045	0.0594	0.0664	0.0885	1.75
	0.0525	0.0401	0.0388	0.0418	0.0553	0.0619	0.0827	1.80
	0,0486	0.0372	0.0359	0.0388	0.0514	0.0575	0.077	1.85
	0.0449	0.0343	0,0332	0.0358	0.0475	0.0533	0.0715	1,90
	0.0413	0.0316	0.0305	0.033	0.0438	0.0492	0.0661	1.95
	0.0378	0.0289	0.028	0.0303	0.0402	0.0452	0.0609	2.00
	0.0345	0.0264	0.0255	0.0276	0.0368	0.0413	0.0558	2.05
	0.0313	0.0239	0.0231	0.025	0.0334	0.0375	0.0508	2.10
	0.0281	0.0215	0.0208	0,0226	0.0301	0,0339	0.0459	2.15
	0.0251	0.0192	0.0186	0,0201	0.0269	0,0303	0.0411	2.20
	0.0221	0,0169	0.0164	0.0178	0,0238	0.0268	0.0364	2.25
	0.0193	0.0148	0.0143	0.0155	0.0207	0.0234	0.0318	2.30
	0,0165	0.0126	0.0122	0.0132	0.0178	0.02	0.0273	2.35
	0.0138	0.0105	0.0102	0,0111	0,0148	0.0168	0.0229	2.40
	0.0111	0.0085	0.0082	0.0089	0.012	0,0135	0.0185	2.45
	0.0085	0.0065	0.0063	0.0069	0.0092	0.0104	0.0142	2.50

表 G. 1g L_r^F 表 ($\theta/\pi \ge 0.7$)

附录H

(规范性附录)

压力管道直管段体积缺陷安全评定方法

H.1 总则

本附录给出了在内压和弯矩的组合载荷作用下,含气孔、夹渣和局部厚度减薄等体积缺陷及特定未 焊透缺陷的钢制在役压力管道直管段的安全评定方法。

H.2 符号

下列符号用于本附录,未规定者按本标准第3章的规定。

Α	缺陷轴向半长, mm;
а	无量纲化的缺陷相对轴向长度,无量纲;
В	缺陷环向半长, mm;
b	无量纲化的缺陷相对环向长度,无量纲;
С	缺陷深度, mm;
с	以管道计算壁厚无量纲化的缺陷相对深度,无量纲;
c_0	以管道公称壁厚无量纲化的缺陷相对深度,无量纲;
Μ	弯矩载荷,kN•m;
$M_{ m L}$	极限弯矩,kN•m;
$oldsymbol{M}_{\mathrm{L}0}$	无缺陷管道在纯弯矩下的塑性极限弯矩,kN•m;
$M_{ m LS}$	含缺陷管道在纯弯矩下的塑性极限弯矩,kN·m;
$m_{1.}$	无量纲塑性极限弯矩,无量纲;
$m_{\rm LS}$	无量纲的含缺陷管道在纯弯矩下的塑性极限弯矩,无量纲;
Р	内压载荷,MPa;
P_{L}	塑性极限内压, MPa;
$\boldsymbol{P}_{\mathrm{L0}}$	无缺陷管道在纯内压下的塑性极限内压, MPa;
P_{LS}	含缺陷管道在纯内压下的塑性极限内压, MPa;
P _{max}	管道较大工作内压, MPa;
$p_{\rm L}$	无量纲塑性极限内压,无量纲;
$p_{\rm LS}$	无量纲的含缺陷管道在纯内压下的塑性极限内压,无量纲;
R_{i}	管道内半径,mm;
$R_{ m m}$	管道平均半径, mm;
R _o	管道外半径, mm;
Т	管道计算壁厚, mm;
T_{0}	管道公称壁厚, mm;
θ	缺陷所对应环向半角,弧度;
$\sigma_{ m b}$	管道材料抗拉强度,MPa;
$\bar{\sigma}'$	管道材料流动应力, MPa;
σ_{s}	管道材料屈服强度, MPa。

H.3 适用范围

H.3.1 本附录适用于同时满足如下条件的钢制在用压力管道:

- a) 在实际工况下,材料具有良好的延性,未发现劣化及劣化倾向;
- b) 管道最低工作温度不低于-20℃,或管道最低工作温度低于-20℃但材料为奥氏体不锈钢;
- c) 管道径比 $R_{o}/R_{i} \leq 1.4$ 。
- H.3.2 本附录适用于下列缺陷:
 - a) 气孔、夹渣、局部减薄等体积型缺陷(其周围无裂纹、未熔合等面型缺陷);
 - b) 在役工况下无脆化倾向的 20 # 或奥氏体不锈钢管道及壁厚不大于 13 mm 的 16 Mn 管道的未 焊透缺陷;
 - c) 体积缺陷的深度 C 小于壁厚 T 的 70%,且缺陷底部最小壁厚(T-C)不小于 2 mm。

H.3.3 对于不符合 H.3.1 和 H.3.2 限定条件或在服役期间表面有可能产生裂纹的含体积缺陷压力 管道,应按本标准附录G的规定进行评定。

H.4 评定程序

评定过程按下列步骤进行:

- a) 缺陷部位管道尺寸的确定;
- b) 缺陷的规则化;
- c) 材料性能数据的确定;
- d) 无缺陷管道在纯内压或纯弯矩下的塑性极限载荷的确定;
- e) 免于评定的判别;
- f) 典型工况载荷组合的确定与缺陷处弯矩的计算;
- g) 含缺陷管道在纯内压和纯弯矩下的塑性极限载荷的确定;
- h) 安全性评价。

H.5 缺陷部位管道尺寸的确定

根据实际情况确定缺陷附近管道的计算壁厚 T 和外径 R。。管道的计算壁厚应取管道实测壁厚与 至下一个检验周期末的腐蚀量之差。

H.6 缺陷的规则化及无量纲化处理

H.6.1 缺陷的规则化

H.6.1.1 壁厚局部减薄缺陷的规则化

对经检测查明的壁厚局部减薄缺陷,根据其实际位置、形状和尺寸,按图 H.1 所示,将其规则化为 轴向半长 A、环向半长 B、深度 C 的表面缺陷。其中,C 取实测最大减薄深度与至下一检验周期末体积 缺陷扩展量之和。

H.6.1.2 未焊透缺陷的规则化

对经检验查明的未焊透缺陷⁸,根据其实际位置、形状和尺寸,按图 H.2 所示,将其规则化为轴向半 长 A、环向半长 B、深度 C 的表面缺陷。

⁸⁾ 仅适用于符合 H. 3. 2 之 b)规定的未焊透。

图 H.1 壁厚局部减薄缺陷表征示意图

图 H.2 未焊透缺陷表征示意图

H.6.1.3 气孔、夹渣缺陷的规则化

对于经检验查明的气孔和夹渣缺陷,首先应按本标准 5.3.2 的规定分别用气孔率和夹渣长度进行 表征。如表征后的气孔、夹渣缺陷不能通过本附录 H.9.1、H.9.2 的免于评定判断,则应根据其实际位 置、形状和尺寸,按图 H.3 所示,将其规则化为轴向半长 A、环向半长 B、深度 C 的表面缺陷,其中若能 够获得可靠的缺陷自身高度 H 值,则 C=H,否则可近似取 C=2A。

H.6.2 缺陷规则化尺寸的无量纲化处理

对经规则化处理得到的缺陷尺寸,按如下规定进行无量纲化处理:

相对轴向长度 $a=A/\sqrt{R_oT}$ 相对环向长度 $b=B/(\pi R_o)$ (对于外表面缺陷) $b=B/(\pi R_i)$ (对于内表面缺陷) 相对深度 c=C/T

图 H.3 气孔、夹渣等埋藏缺陷表征示意图

H.7 材料性能数据的确定

按本标准 5.5 和附录 B 的规定确定在评定工况下材料的屈服强度 σ, 并按下述规定确定材料的流 动应力:

$$\begin{cases} \bar{\sigma}' = \sigma, & 用于非焊缝区 \\ \bar{\sigma}' = \phi\sigma, & 用于焊缝区 \end{cases}$$

其中,焊接接头系数 ♦ 按管道实际设计制造要求选取,也可参照压力管道或压力容器的有关标准偏保守 地选取。

H.8 无缺陷管道在纯内压下的塑性极限内压 P_ω和在纯弯矩下的塑性极限弯矩 M_ω的计算

$$P_{\rm L0} = \frac{2}{\sqrt{3}} \,\overline{\sigma}' \ln \frac{R_o}{R_i} \tag{H.1}$$

$$M_{\rm L0} = 4\bar{\sigma}' \,\frac{R_{\rm o}^3 - R_{\rm i}^3}{3} \tag{H.2}$$

H.9 免于评定的判别

H.9.1 气孔免于评定的判别

如果同时满足下列条件,则该气孔可免于评定:

- a) 气孔率不超过6%;
- b) 单个气孔的长径小于 0.5 T,并且小于 9 mm。

H.9.2 夹渣免于评定的判别

如果夹渣的自身高度或宽度不大于 0.4 T,则该夹渣可免于评定。

H.9.3 局部减薄和未焊透⁹⁾缺陷免于评定的判别

如果同时满足下列条件,则该局部减薄或未焊透缺陷可免于评定:

- a) 管道结构符合设计制造要求;
- b) $P_{\rm max}/P_{\rm L0} \leq 0.3;$
- c) 局部减薄或未焊透相对深度 co¹⁰⁾ 不超过表 H.1 规定的容限值。

表 H.1 压力管道局部减薄与未焊透缺陷容限值

缺陷的相对环向长度 b	<i>b</i> ≪0.25	0.25< <i>b</i> ≤0.50	0.50 <i><b< i="">≤0.75</b<></i>	0.75< <i>b</i> ≤1.00
容许的最大缺陷相对深度 c。	0.45	0.40	0.35	0.25

如果缺陷可免于评定,则认为是安全的或可接受的;否则应继续按 H.10~H.12 的规定进行评定。

H.10 典型工况载荷组合与缺陷处弯矩载荷的确定

根据实际情况,确定需要进行缺陷评定的载荷工况,给出相应的内压载荷 P,并通过有限元方法或 其他可靠的方法确定相应评定工况下缺陷处的弯矩载荷 M。

H.11 含缺陷管道在纯内压和纯弯矩下的塑性极限载荷的确定

H.11.1 纯内压下的塑性极限内压

$$P_{\rm LS} = p_{\rm LS} \times P_{\rm L0} \tag{H.3}$$

式中,

$$p_{\rm LS} = \begin{cases} 0.95 - 0.85A_{\rm e} & a/b \leq 7.0\\ 0.95 - 1.04A_{\rm e} & 7.0 < a/b \leq 25.0\\ 0.95 - 1.47A_{\rm e} & a/b > 25.0 \end{cases}$$
(H.4)

$$A_{e} = c^{3}\sqrt{a_{e}bc} \qquad (H.5)$$

$$a_{\rm e} = \min(3, 0, a)$$
 (H.6)

H.11.2 纯弯矩下的塑性极限弯矩

$$M_{\rm LS} = m_{\rm LS} \times M_{\rm L0} \tag{H.7}$$

式中,

$$m_{1S} = \begin{cases} \cos\left(\frac{c\pi b}{2}\right) - \frac{c\sin(\pi b)}{2} & c < \frac{1-b}{b} \\ (1-c)\sin\left[\frac{\pi(1-b\,c)}{2(1-c)}\right] + \frac{c\sin(\pi b)}{2} & c \ge \frac{1-b}{b} \end{cases}$$
(H.8)

H.12 安全性评价

如果式(H.9)成立,则该缺陷是安全或可以接受的;否则,认为不能保证安全或不可接受。

$$\left(\frac{P}{P_{1S}}\right)^2 + \left(\frac{M}{M_{1S}}\right)^2 \leqslant 0.44 \tag{H.9}$$

对于气孔、夹渣等埋藏型体积缺陷,如未能通过本附录所规定的安全评定计算,可将其表征为埋藏 平面缺陷并按本标准附录G重新进行评定。

⁹⁾ 仅适用于符合 H. 3. 2 之 b)规定的未焊透。

¹⁰⁾ $c_0 = [C + (T_0 - T)]/T_0$.